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Chapter 1 

Introduction 

The ALPS (Adaptive Learning and Planning System) project is a three-year effort to 
design and prototype a next-generation adaptive planning architecture as part of the 
ARPA / Rome Laboratory Planning Initiative (ARPI). ALPS is being used within the 
Planning Initiative to perform large-scale military transportation scheduling, taking a 
Time-Phased Force Deployment Data (TPFDD) file with thousands of cargo requests and 
assigning those cargos to particular transportation resources with specific embarkation 
and debarkation times. This chapter presents the architectural design of ALPS and gives 
a brief overview of the innovative techniques incorporated in the system. 

The ALPS (Adaptive Learning and Planning System) project is a three-year effort to design and 
prototype a next-generation adaptive planning architecture as part of the ARPA / Rome Laboratory 
Planning Initiative (ARPI). ALPS is a joint project between Odyssey Research Associates (ORA), 
Cornell University, and the University of Iowa.2 

Two motivating themes drive the ALPS project. The first theme is that real-world planning 
systems must necessarily be adaptive, that is, they must reconcile themselves to their environment 
by improving, refining, and perfecting their own behavior with practice. The second theme is 
that we want to see how far we can push the paradigm of planning as resource-bounded logical 
deduction, particularly within the somewhat atypical domain of large-scale military transportation 
scheduling. 

Within the first theme of adaptive systems, we have conducted basic research, experimentation, 
and evaluation in several areas: 

• We have developed machine learning speedup techniques, including a new domain-independent 
explanation-based learning algorithm and bounded-overhead success and failure caching, to 
improve performance with experience [88, 89, 90]. 

• We have produced a new method for distributing search transparently across a network of 
processors, called nagging [97, 104]. 

lrThis chapter is adapted from [21]. 
2Support for this research has been provided by Rome Laboratory through Contract Number F30602-93-C-0018. 

The views and conclusions contained in this document are those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, of the U.S. Government. 

The following people have contributed to the ALPS project: Kurt Bischoff, Randy Calistri-Yeh, James Cash, Sarah 
Choi, Geoffrey Hird, Yungui Huang, Harshvardan Kaul, Jinghou Li, Howard Lu, Marcel Rosu, Alberto Segre, David 
Sturgill, Alex Vinograd, and Yunshan Zhu. 



• We have developed a probabilistic theory revision technique for correcting flaws in domain 
theories [56]. 

• We have formulated an algorithm called iterative strengthening that performs anytime optimal 
planning [12, 13, 14]. 

Within the second theme of applying our techniques to transportation scheduling, we have made 
several advances in domain-specific methods: 

• We have built a transportation problem generator that creates random scalable transportation 
scheduling problems. 

• We have designed a logical domain theory and a customized transportation scheduler that 
can rapidly solve large-scale military transportation scheduling problems, scheduling 10,000 
cargos on 50 squadrons of aircraft in about 3.5 minutes. 

• We have implemented a transportation simulator that can test transportation plans for ro- 
bustness in the presence of resource bottlenecks and external events. 

• We have designed an iterative plan repair module that can work with the scheduler and 
simulator to fix flaws in transportation plans. 

Overviews of the ALPS project are presented in [15, 16, 17, 18, 19, 20, 21]. Further information 
on the ALPS project can be found on the ALPS web page at: 

<http://www.oracorp.com/ai/Planning/alps.html>. 
The remainder of this chapter gives a brief description of the transportation scheduling domain, 

presents the architecture of the ALPS system, and introduces the innovative technology employed in 
each of the major components. Chapter 2 introduces the first of the three ALPS inference engines. 
Chapters 3 and 4 present details of our work on adaptive inference using caching and explanation- 
based learning. Chapter 5 introduces the second ALPS inference engine and describes our new 
method of distributed theorem proving. Chapter 7 discusses how multiple speedup techniques 
can be combined for synergistic benefits. Chapter 6 discusses our approach to anytime optimal 
planning. Chapter 8 introduces the final ALPS inference engine and discusses its use in the domain 
of transportation planning. Chapter 9 presents our methods of iterative plan repair. Chapters 9 
and 10 describe the ALPS transportation simulator and other domain-related components. Finally, 
Chapter 11 summarizes the results we have obtained during this project. 

1.1    ALPS and Transportation Scheduling 

Within the Planning Initiative, ALPS is being used to perform large-scale transportation scheduling. 
A formal description of the transportation scheduling problem can be found in [30], but one possible 
interpretation can be informally stated as follows: 

Given a list of schedule requirements consisting of cargo to be transported, availability 
and delivery deadlines, and ports of embarkation and debarkation, along with other 
domain constraints (such as vehicle availability), construct a plan that satisfies these 
requirements by specifying, for each cargo item, the vehicle and departure time (along 
with any other necessary information). Then carry out this plan, dynamically modifying 
it if changing situations require, in order to satisfy the original requirements- 



A typical transportation planning task can range from 1,500 to 200,000 movement requirements 
[27, App. 1], so scaleup is definitely an issue. Since the transportation domain itself is open- 
ended, a planner's domain theory will obviously have to begin as a simplified approximation that is 
progressively refined. Rapidly developing crisis situations are not conducive to complete, accurate 
knowledge; much information will be inaccurate, incomplete, or totally missing. These rapidly 
developing situations will mean that an initially viable transportation schedule may no longer 
work, and the schedule will have to be modified to fit the new situation. 

In addition, the transportation domain is especially dependent on large amounts of temporal, 
geometric, and geographic knowledge. Each individual movement in a transportation plan involves 
complex reasoning about time intervals such as earliest arrival date to latest arrival date (EAD- 
LAD) and time points such as required delivery date (RD.D) [3, pp. 6.34-6.36], and cargo must be 
divided into different categories based on what size and shape pallet is required for storage [27, 
App. 1]._ 

The information that defines a particular military transportation problem is typically pre- 
sented in a Time-Phased Force Deployment Data (TPFDD) database file [50]. Since real TPFDD 
files are difficult to acquire and are often restricted or classified, we have created a random 
problem generator called TGEN that produces scalable, customizable transportation scheduling 
problems. Each problem consists of a set of airports/seaports, a set of airplanes/ships, and 
a set of cargos to be transported. Each problem is further constrained by a number of fac- 
tors such as required delivery times, travel times, minimum runway lengths, and weight limits. 
TGEN can optionally generate full TPFDD files. TGEN is available from the ALPS web page at 
<http://www.oracorp.com/ai/Planning/tgen.html>. 

1.2    An Overview of the ALPS Architecture 

The architecture design of the ALPS system is shown in Figure 1.1. 
The input to the system is a query and a set of data files provided by the user. These inputs pass 

through a (possibly empty) series of domain-specific pre-filters that construct a domain theory and 
problem statement appropriate for ALPS. That information is then fed to an inference engine, which 
generates a solution to the user's query. The user can select any of three ALPS inference engines 
(two generic and one domain-specific); they differ in properties such as speed, customizability, 
diagnostic output, and extensibility. The plan produced by the inference engine can be optimized 
by the iterative strengthening module, a flexible anytime optimization algorithm that is layered on 
top of the inference engines. Once the inference engine has produced a solution to the user's query, 
the resulting plan is run through a simulator and is possibly modified by a plan repair module; the 
final answer is then passed through another set of domain-specific post-filters before being presented 
to the user. 

In addition to several domain theories for classic AI domains, ALPS contains a domain theory 
and set of filters for scheduling TPFDD problems as described above. Figure 8.2 on page 102 shows 
a snapshot of the ALPS graphical/user interface as ALPS is solving a transportation problem. 

1.2.1    The Adaptive Inference Engines 

Our inference engines are adaptive in the sense that their performance characteristics change with 
experience. Adaptive inference is an effort to bias the order of search exploration so that more 
problems of interest are solvable within a given resource limit.3 ALPS achieves this bias by using 

Typical resource limits are CPU cycles, execution time, or memory usage. But to factor out machine dependencies, 
experiments usually measure the number of nodes expanded or visited. 
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multiple speedup techniques including bounded-overhead success and failure caching, explanation- 
based learning (EBL), and a new distributed computing technique called nagging. An important 
result of our research is that multiple speedup techniques can be applied in combination to signifi- 
cantly improve the performance of an automated deduction system. 

The user can select the ALPS inference engine most appropriate for the current task. The Lisp 
Inference Engine is well suited for early development work on new domain theories since it includes 
better tracing and debugging features, simpler manipulation of specialized caching strategies, and 
the availability of an explanation-based learning (EBL) module to help extract more efficient rules. 
The DALI (Distributed Adaptive Logical Inference) engine is appropriate for larger problems since 
it is up to 30 times faster than the Lisp Inference Engine and since in addition to caching and 
EBL it also provides distributed computing through nagging. The "Fast Scheduler" (discussed in 
Chapter 8) is a special-purpose engine tailored specifically for large-scale transportation scheduling 
problems. 

1.2.2 Caching 

A cache is a device that stores the result of a previous computation so that it can be reused. It 
trades increased storage cost for reduced dependency on a slow resource. In the case of planners 
and deduction systems, the extra storage required to store successfully proven subgoals is traded 
against the increased cost of repeatedly proving these subgoals. The utility of such a cache depends 
on how often subgoals are likely to be repeated. Since the ALPS adaptive inference engine uses 
iterative deepening [57] to force completeness in recursive domains, we know a priori that subgoals 
will be repeated frequently. 

It is possible to cache both successfully proven subgoals and failed subgoals. Failure cache 
entries may record either an outright failure (i.e., the entire search tree rooted at the subgoal was 
exhausted without success) or a resource-limited failure (i.e., the search tree rooted at the subgoal 
was examined unsuccessfully as far as resources allowed, but greater resources may later yield a 
solution). Future attempts to prove a cached subgoal are not undertaken unless the resources 
available are greater than they were when the failed attempt occurred. Success and failure caches 
serve to prune the search space rooted at the current subgoal. Success caches act as extra database 
facts, grounding the search process, while failure caches censor a search that is already known to 
be fruitless. Either way, they serve as effective speedup techniques by dynamically injecting bias 
into the search, altering the set of problems that are solvable within a given resource bound. 

Allowing the cache to grow without limit will generally increase the number of cache hits, but 
it will also cause the cache overhead to grow monotonically, eventually outweighing any possible 
advantage of caching. To address this tradeoff, we make use of bounded-overhead caches [89]. A 
bounded-overhead cache is one that requires at most a fixed amount of space and entails a fixed 
amount of overhead per lookup. Once the cache is full, adding a new entry entails deleting an 
existing one. The system uses a cache management policy such as first-in-first-out (FIFO) or 
least-recently-used (LRU) to decide which existing entry should be replaced. Using a fixed-size 
cache allows us to apply information acquired in the course of solving one problem to subsequent 
problems, while limiting the overhead associated with a caching scheme. 

1.2.3 Explanation-Based Learning 

Generalizing on the caching method described above, a simple way to increase the performance 
of a resource-limited problem solver is to cache the proof result of each successful problem-solving 
episode as a new fact in the domain theory.   Unfortunately, this kind of rote learning is overly 



constraining because there may exist another form of the query, provable with the same pattern of 
reasoning implicit in the proof of the current example, that will not match the cached entry. 

Much more desirable is some mechanism by which the chain of logical reasoning used in the 
proof can be generalized so as to be more useful and then retained and reused. This is the essence 
of explanation-based learning (EBL): we operate on the proof of the query to generalize it in some 
validity-preserving manner, and then we extract a new, more general rule (explanation) to extend 

the domain theory. 
Note that the addition of a new explanation will not change the deductive closure of a domain 

theory, although it may well have a significant effect on the future efficiency of the prover. Once 
a new rule has been added to the domain theory, the hope is that when a future query requires 
a similar proof structure, this structure will be found more quickly thanks to the presence of the 
acquired rule. If the distribution of future problems is favorable, then the prover should exhibit 
better overall (i.e., faster) performance. It may even solve additional problems that were previously 
unsolvable within a fixed resource bound. Unfortunately, the effect of EBL may actually be to slow 
down the prover: if the macro-operator does not lead to a solution for a particular problem, it just 
defines a redundant path in the search space, and using the macro-operator causes a region of the 
search space to be searched again in vain. This undesirable effect is called the utility problem. 

We have defined five generic operators that transform proofs in various ways. These five opera- 
tors constitute the EBL* family of algorithms [88]; a specific EBL* algorithm is defined by applying 
these operators in some fixed combination. EBL* is complete in the sense that any macro-operator 
extracted from a proof by any explanation-based learning algorithm can also be learned by an EBL* 
algorithm. This implies that since any EBL algorithm can be rewritten as some combination of the 
five basic operators, the main difference in EBL algorithms is the control heuristics that they use 
to guide the transformation process. 

We have incorporated one specific set of control heuristics into a domain-independent learning 
algorithm called EBL*DI that has shown itself to be useful over a broad range of domains. The 
EBL*DI algorithm is superior to traditional EBL algorithms in several ways. First, it is able 
to acquire useful macro-operators in situations where traditional algorithms cannot. Second, it 
produces macro-operators of significantly greater utility than those produced by traditional EBL 
algorithms. Finally, the EBL*DI algorithm is truly a domain-independent learning algorithm in 
the sense that it is useful over a broad range of domains.4 

1.2.4    Nagging 

The second inference engine used in ALPS is called DALI [97]; DALI is a distributed adaptive 
inference engine that can run transparently in a heterogeneous distributed environment (e.g., on a 
network of workstations and personal computers). Like the Lisp Inference Engine, DALI uses the 
adaptive techniques of caching and explanation-based learning. However, DALI has advantages over 
single-processor inference engines in that DALI can scale to larger more realistic target problems, 
it provides greater reliability and fault tolerance, and it exploits the natural synergy between 
parallelism and speedup learning. 

DALI uses a novel asynchronous parallelism scheme called nagging [104]. Nagging is designed 
to work in highly constrained nondeterministic search problems. Under the typical left-to-right, 
depth-first evaluation order, subgoals to the left are completely satisfied before subgoals to the right 
are even examined. This policy can yield extremely bad search behavior: if variable bindings early 
in the search preclude the solution of a later goal, this inconsistency may not be resolved until the 

4In practice, we expect that optimal EBL strategies may well be domain dependent: taking specific knowledge of 
a particular domain into account should lead to better, more useful, generalizations. 



searcher has performed a great deal of intermediate backtracking. Nagging is designed to alleviate 
this problem by asynchronously verifying that pending conjunctive goals have not been rendered 
unsatisfiable. 

Nagging employs two types of processes running in parallel: a master process attempts to solve 
a given problem while one or more nagger processes attempt to assist the master. While the master 
is searching for a solution, the nagging processes repeatedly extract sets of unsolved goals from the 
master's goal stack and attempt to solve them under some of the variable bindings that the master 
has effected. If a nagger cannot satisfy its subset of the master's goal stack, then it is guaranteed 
that the master will be unable to satisfy all of its outstanding goals. The nagger can then inform 
the master that its current search path cannot lead to a consistent solution. If the master has 
not yet backtracked out of that search path, it may do so immediately without risk of missing a 
solution. 

This nagging policy essentially performs asynchronous pruning of the search space. Ordinarily, 
a search-based problem solver must balance the competing interest of being fast and being smart. It 
must choose some combination of a strategy of performing local search quickly and one of performing 
global consistency checks that may obviate some local search. Nagging can be characterized as a 
policy of verifying global consistency constraints asynchronously and in parallel. If a nagging 
process detects violation of a global constraint, it can force the search to backtrack. If a nagging 
process fails to detect an inconsistency, its master process has wasted no time in verifying the 
constraint. 

Nagging offers the potential of greatly speeding the search. By forcing its parent prover to 
backtrack early, it may prune large subtrees from the prover's search space. This policy also enjoys 
many of the desirable properties associated with various conventional parallelization techniques: 

• As with OR-parallel models, assignment of work is initiated by idle processors; busy processors 
don't have to constantly stop to see if they should delegate some of their workload. 

• Like many varieties of OR-parallelism, communication is infrequent, occurring only when a 
process needs a new search problem. Accordingly, the run-time overhead of nagging is fairly 
low. 

• Like the stream AND-parallel strategy, nagging can benefit from the communication of partial 
variable bindings. Nagging makes use of the variable bindings made in a subtree before that 
subtree is completed. 

• As with some of the work in AND-parallelism and parallel Prolog, nagging does not alter 
the order in which the search space is explored; it simply prunes portions of the space that 
are guaranteed to be useless. The first solution discovered will be the same with or without 
nagging. 

• Since nagging only serves to prune search branches that are known to be infeasible, the search 
behavior on the proving process will never be worse than that of the sequential algorithm. 

Nagging is particularly appropriate for distributed planning and theorem proving since, in 
addition to promising low communication overhead, it is also more fault-tolerant than other types 
of distributed search. Since interaction with a nagger only results in a master prover potentially 
skipping ahead in its search, the prover has no real dependence on the nagger. For bounded 
search problems, any search space skipped as a result of nagging would eventually be exhausted 
by the prover. If messages between prover and nagger are lost or delayed, the prover may explore 
unnecessary search space, but it will eventually return an identical solution. 



1.2.5    Iterative Strengthening 

To perform adequately in real-world situations, a planning system must do more than simply 
generate a plan that satisfies the user's goals. In many domains, a given problem statement may 
have multiple solutions, and the user typically will want the best solution (although the criteria 
for "best" may change from one user to another or one problem to another). Additionally, many 
domains are time-critical and require support for "anytime" behavior. In this context, an anytime 
algorithm is one in which a solution is incrementally refined over time; if the algorithm is run to 
completion it will find an optimal solution, but the user can interrupt it at any point and demand 
a useful (but not necessarily optimal) solution. 

We have developed an algorithm called iterative strengthening [18,19], a flexible method of pro- 
ducing optimized plans where the user's criteria for optimization may change during the planning 
session. Iterative strengthening has the following properties: (1) the underlying knowledge base is 
independent of any specific optimizing parameters; (2) users can easily switch between different sets 
of optimizing criteria; (3) the method supports optimized planning within an "anytime" environ- 
ment; (4) the method is consistent with Prolog-style inference engines such as the ALPS adaptive 
inference engine; and (5) the method can be used in situations where the optimality constraints are 
inadmissible or where the domain theory is undecidable. We have implemented this method in the 
ALPS planning system and have tested it in the domain of crisis-action transportation planning 
with optimality criteria such as total transport time, number of aircraft, and probability of success. 

Iterative strengthening is related to the concept of iterative deepening (in which the system 
searches to a given depth in the search tree for a solution, and if none is found, the system restarts 
the search from the beginning with a larger depth cutoff). The iterative strengthening algorithm 
first performs an unconstrained search for any satisficing solution to the planning problem. When 
it finds that solution, it restarts the search, but now constrains the solution to be "better" than 
the first solution by some "increment" (where "better" is measured by an optimization function 
specified by the user and "increment" is a function applied to the optimization parameters of 
the current plan). For example, if the goal is to find the plan that takes the minimum time to 
execute, and if the system has already found a plan that takes n minutes, it will restart the search 
constraining the new plan to n - 6, where 6 is a user-defined constant. The system continues 
strengthening the optimization parameters until no more solutions can be found; the last solution 
is the optimal answer. 

Although iterative strengthening may take longer to find the final optimized plan than other 
optimal search algorithms such as A* [79], iterative strengthening has the advantage that it can be 
interrupted at any time after the initial plan is found and will always have a valid plan available 
for the user. Since this initial plan is found using satisficing criteria instead of optimizing criteria 
(i.e., since we first concentrate on finding a simply correct plan rather than a fully optimal one), it 
is likely that iterative strengthening will generate a valid plan significantly faster than algorithms 
such as A*. In other words, iterative strengthening supports incremental improvements to existing 
valid plans; it can deliver an initial plan promptly and then spend any remaining time improving it 
until an optimal plan is discovered or until the available planning time is exhausted. Additionally, 
iterative strengthening can be used in situations where other techniques will not work at all, such 
as inadmissible search heuristics and undecidable domains (see Chapter 6). 

1.2.6    The ALPS Simulator 

In the transportation planning domain, once the ALPS inference engine generates a schedule, the 
schedule is passed along to the simulator. The simulator performs two primary services. First, it 



analyzes the schedule at a finer level of detail than the inference engine did. This analysis allows 
the simulator to identify resource contentions and bottlenecks that the inference engine would have 
missed. Second, the simulator can test the schedule for robustness in the presence of unanticipated 
difficulties by simulating nondeterministic external events (such as storms, mechanical failures, or 
terrorist activity) that may affect the outcome of the schedule . 

The ALPS simulator is based on an object-oriented design. The simulator takes as input the 
initial world state (locations of cargos, allocation of transportation assets, etc.) that was given to 
the inference engine, along with the schedule that the inference engine generated. It constructs 
a stream of events and executes these events in a simulated world, reporting the results of this 
simulation. It simulates resource bottlenecks using monitors that manage and allocate resources. 

The transportation domain theory currently used by ALPS deliberately ignores resource con- 
tention when constructing a schedule; it verifies that the necessary resources exist but does not 
verify that they are available for use. The rationale behind this design decision is that there is 
no point in scheduling a particular airplane to land on a particular runway within a 10-minute 
window one week in the future because in real life the schedule will have broken down long before 
it ever reaches that point. By using the simulator, ALPS can test whether bottleneck conditions 
are likely to occur without committing the schedule to an unreasonable level of detail. The results 
of the simulation are sent to the ALPS plan repair module (described below), which will make local 
modifications to correct any identified deficiencies. 

1.2.7    Plan Repair in ALPS 

The ALPS plan repair module [117] uses a general iterative repair technique that has been cus- 
tomized to work with the ALPS Fast Scheduler and transportation simulator. It takes as input 
an existing plan from the inference engine, a list of failures from the simulator, and an optional 
list of problem modifications from the user; the output of the repair process is an updated plan. 
ALPS uses a basic heuristic assumption that most failures can be fixed with local modifications (if 
a failure involves global changes to the original plan, it is unlikely that any repair method will be 
better than simply replanning from scratch). 

The approach used by ALPS exploits this locality of plan repair and maintains completeness 
by doing iterative replanning. ALPS repairs a plan by retracting actions that are "local" to the 
failure, formulating a new planning problem based on the goals of those retracted actions, and 
solving that problem to generate a replacement sequence of actions. It continues retracting and 
replacing actions iteratively until the resulting plan is correct. 

In the transportation domain, we have found two ways of defining "locality" that are particularly 
useful. One is to order trips based on airplanes (single plane repair (SPR))] the other is to order 
trips based on departure times (multiple plane repair (MPRJ). 

For SPR, we restrict the set of retracted actions to be within one single airplane schedule. 
Initially, the repair module retracts the single identified failed trip, updates its temporal intervals, 
and tries to fit this updated trip back in the original schedule for this airplane. If the updated 
trip does not fit, the module will iteratively retract trips before and/or after the initial faulty trip, 
reschedule all cargos on these trips in isolation (using only this airplane), and try to fit the new 
subschedule back into the original schedule. The iteration stops when the rescheduled trip sequence 
fits in the airplane schedule (possibly displacing some cargos because they are no longer possible 
to schedule). 

MPR has the added ability of rearranging cargos among multiple airplanes. Initially, the repair 
module tries to insert an undelivered cargo directly into the existing global schedule. If this insertion 
is not successful, MPR will iteratively retract cargo trips within a certain time interval to create a 



"window" across all airplane schedules and will try to fit all cargos back into the global schedule 
(not necessarily on their original airplanes). The iteration succeeds if the undelivered cargo and all 
retracted cargos fit in the schedule; otherwise the undelivered cargo is marked as "too hard". 

Interestingly, SPR and MPR can be combined to handle different types of failures very efficiently. 
By ordering trip schedules differently, SPR and MPR can exploit two different views of locality 
to perform different types of "local repairs". SPR is more appropriate for handling delayed trips 
and deadline violations because these failures can most often be avoided by adjusting trips locally 
within the same airplanes. On the other hand, undelivered cargos or airplane failures often require 
the collaboration of multiple airplanes in MPR, and the most relevant trips are the ones clustered 
locally around similar departure times. 

Using temporal locality can also help to minimize the changes to the overall plan structure. 
Optimally conservative plan modification is computationally intractable [76], but we do not neces- 
sarily need to absolutely minimize the number of changed actions. In the transportation domain, 
for example, it may be less intrusive to reorder 50 trips within one single airplane than to replace 
20 trips spread across many airplanes. Using a combination of SPR and MPR in this domain 
clusters the changes naturally, producing good locality of modification without requiring optimal 
conservation. 
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Chapter 2 

The ALPS Lisp Inference Engine 

This chapter introduces the ALPS Lisp Lnference Engine.1 

2.1     Introduction 

The ALPS Lisp Inference Engine is adaptive in the sense that its performance characteristics change 
with experience. While others have previously suggested augmenting Prolog interpreters with 
explanation-based learning components [82], our system is the first to integrate advanced speedup 
techniques such as explanation-based learning and bounded-overhead success and failure caching. 
Adaptive inference is an effort to bias the order of search exploration so that more problems of 
interest are solvable within a given resource limit. Adaptive methods include techniques normally 
considered speedup learning methods as well as other techniques not normally associated with 
machine learning. All the methods that we consider, however, rely on an underlying assumption 
about how the inference engine is to be used. 

The goal of most work within the automated deduction community is to construct inference 
engines that are fast enough and powerful enough to solve very large problems once, then to move on 
to another unrelated problem. In contrast, we are interested in using our inference engine to solve 
a collection of related problems drawn from a fixed (but possibly unknown) problem distribution. 
These problems are all solved using the same domain theory. A complicating factor is that the 
inference engine is operating under rigid, externally imposed resource constraints. 

For example, in the transportation scheduling domain, a stream of queries corresponding to 
transport requests are passed to the inference engine; the inference engine uses a logical formulation 
of domain knowledge to derive sequences of actions that are likely to achieve the goal. Since much 
of the world does not change from one query to the next, information obtained while answering one 
query can dramatically affect the size of the search space that must be explored for subsequent ones. 
The information retained may take many different forms: facts about the world state, generalized 
schemata of inferential reasoning, advice regarding fruitless search paths, etc. Regardless of form, 
however, the information is used to alter the search behavior of the inference engine. All of the 
adaptive inference techniques we employ share this same underlying theme. 

'This chapter is adapted from [90]. 
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2.2    Proofs and Inference 

Before describing our inference engine, we must establish the underlying knowledge-representation 
formalism. For the purposes of this chapter, it is reasonable to adopt a very simple formalism: 
our choice is one involving only facts and rules. Facts are atomic formulae, or atoms, such as 
fragile(chippendale) or expensive{1x), where the leading question mark is used to indicate a logic 
variable.2 Rules are implications, such as light(?x) <- on(?x, ?y) A fragile(?y), where the head is 
light(?x, ?y) and the antecedents are on(?x, ?y) and fragile(?y). Technically, facts and rules are both 
first-order definite clauses, with function symbols allowed, but with no special equality predicate. 
This same formalism underlies most of the work in the logic programming community, in particular 
the Prolog programming language. 

In this formal framework, a domain theory consists of an initial set of facts and rules. The 
domain theory entails a certain deductive closure, which is the collection of all atomic formulae that 
follow logically from the given domain theory. Problem-solving consists of determining whether or 
not a given query, which may contain some number of existentially quantified variables, is a member 
of this deductive closure. The query is a member of the deductive closure if an explanation justifying 
the truth of some substitution instance of the query, i.e., a proof, can be constructed. 

Given our knowledge representation formalism of facts and rules, proofs are tree-structured and 

recursive. Formally: 

Definition 1 : A proof is a tree composed of two types of nodes, consequent nodes and subgoal 
nodes, and two types of edges, rule edges and match edges. Each node n has two tags, a formula, 
denoted f(n), and a label, denoted l(n), which are atomic formulae. 

A consequent node corresponds to the head of a domain theory rule, while a subgoal node 
corresponds to an antecedent of a domain theory rule. A match edge links a parent subgoal node 
to a (unique) child consequent node, while rule edges are used to link a parent consequent node to 
its child subgoal nodes. 

Definition 2 : A consequent node nc is a node with zero or more children, denoted r(nc), connected 
to nc via outgoing rule edges, and a lone parent, denoted p(nc). 

Definition 3 : A subgoal node ns is a node with at most one child, denoted m(ns), connected to 
,s via an outgoing match edge, and a lone parent, denoted p(ns). n 

The root root(p) of a proof p is always a subgoal node representing the original query q. 
For a given query, problem-solving activity may in general yield zero, one, or more proofs. 

Definition 4 : A problem-solving episode n#(g) for a given query q and resource bound R yields 
a series of results {^iYiZi such that n > 1 and 

1. Wi = pi for i < n, where pi is a proof with l(root(pi)) = q and corresponding answer substitu- 
tion 0i = l(root(pi)) o f(root(pi)); and 

2Atomic formula, predicate, function, variable, substitution, substitution instance, and other related terms are 
denned in [64]. In addition to the notation used by Lloyd, we will use o to denote the "unify" relation (i.e., aob 
iff 36 such that aO = b6), C to denote the relation "is a substitution instance of" or "is at least as specific as" (i.e., 
a C 6 iff 36 such that a6 = b), C to denote the relation "is a non-trivial substitution instance of" or "is strictly more 
specific than" (i.e., a C b iff a C 6 A ->£> C a), = to denote the relation "is a variable-renaming substitution instance 
of" or "is exactly as specific/general as" (i.e., a = b iff a C b Ab C a), and = to denote the relation "is identical to." 
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2. 7rn = fail, indicating that no further substitution instance of the query q lies within the 
deductive closure D; or 7rn = limit, indicating that no further substitution instance of the 
query q lies within the resource-limited deductive closure DR (although one may well lie 
within D). 

It is sometimes more convenient to refer to the answer substitution series An(q) — (#;)jl™~ 
instead of its corresponding problem-solving episode II#(g). 

Next we introduce a notion of soundness for proofs. Informally, a proof is valid if it is deductively 
correct. More formally: 

Definition 5 : A proof p is valid if and only if 

1. for each subgoal node with an outgoing match edge ns £ p, node formulae are identical across 
the match edge: 

/(»*) = /(n»(n8)); 

2. for each consequent node nc £ p, the logical implication 

l{nc) <-     f\    l(ns) 
ns€r(nc) 

follows deductively from the original domain theory; and 

3. for each consequent node nc £ p, the logical implication 

/(»c)<-   A f(n*) 
nser(nc) 

is a substitution instance of the logical implication 

l(nc) <-     /\    l(ns). 
ns£r{nc) 

The validity of a proof is independent of the original query and the problem-solving system 
used to construct it; rather, validity is an intrinsic property of the proof structure. 

2.2.1    A Sample Proof 

It is useful to look at a complete example of a valid proof. Consider the following simple domain 
theory consisting of just nine facts and three rules: 

k(D) p(B) q(1y) 
k(h(lw))    n(h(A))    j(A) 
p{A) n(h(B))    j(C) 

s(!a)    <-    ?(?6)Ar(?o,?6) 
r{tc,1d)    *—    p(?e) A m(?c, ?e) A n(?c) 

m{1f,tg)    -    i(?s)Afc(?/) 

The first result, p\, of the problem solving episode II(s(?a;)) is shown in Figure 2.1.3 The 
subgoal node root(p\) at the top represents the original query q, with l(root(p\j) = q = s(1x) and 
f(root(pi)) = s(h(A)), a substitution instance of q with answer substitution 9 = {?a;//i(A)}. The 

We omit the subscript R when no resource limit is imposed on the search. 
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consequent node directly below roof(pi), m(root(p1)), has label l(m(root(pi))) = ,s(?a), the head of 
the matching domain theory rule.4 Each subgoal descendent has its label set to the corresponding 
rule antecedent, here q{1b) and r(?a,?6), and its formula set to the appropriately instantiated 
version of the antecedent, here q(A) and r(A, A). Nodes connected by match edges have identical 
formulae, while the leaves of the explanation are childless consequent nodes whose labels correspond 
to domain theory facts and whose formulae correspond to appropriate instances of those facts. Thus 
it is clear that for any subgoal node ns, the subtree rooted at ns provides a valid proof for f(ns). 

2.3    The ALPS Lisp Adaptive Inference Engine 

We have implemented a backward-chaining definite-clause inference engine (referred to in this report 
as the "Lisp Inference Engine") that returns valid proof structures of the form just described. The 
inference engine's inference scheme is essentially equivalent to Prolog's SLD-resolution inference 
scheme. Axioms are stored in a discrimination net database along with rules indexed by the rule 
head. The database performs a pattern-matching retrieval guaranteed to return a superset of those 
database entries that unify with the retrieval pattern. The cost of a single database retrieval in 
this model grows linearly with the number of matches found and logarithmically with the number 

of entries in the database. 
Like all definite-clause inference engines, ours searches an implicit AND/OR tree defined by the 

domain theory and the query, or goal, under consideration. Each OR node in this implicit AND/OR 
tree corresponds to a subgoal that must be unified with the head of some matching clause in the 
domain theory, while each AND node corresponds to the body of a clause in the domain theory. 
The children of an OR node represent alternative paths to search, while the children of an AND 
node represent sibling subgoals that require mutually consistent solutions. 

The search strategy determines the order in which the nodes of the implicit AND/OR tree are 
explored. Different exploration orders correspond not only to different resource-limited deductive 
closures DR, but also to different solutions of the queries in DR as well as different node expansion 
costs. For example, breadth-first inference engines guarantee finding the shallowest solution, but 
require excessive space for problems of any significant size. Depth-first inference engines require 
less space, but risk not terminating when the domain theory is recursive. Choosing an appropriate 
search strategy is a critical design decision when constructing an inference engine. 

Our system relies on a well-understood technique called iterative deepening [57] for forcing 
completeness in recursive domains while still taking advantage of depth-first search's favorable 
storage characteristics. As generally practiced, iterative deepening involves limiting depth-first 
search exploration to a fixed depth. If no solution is found by the time the depth-limited search space 
is exhausted, the depth limit is incremented and the search is restarted. In return for completeness 
in recursive domains, depth-first iterative deepening generally entails a constant factor overhead 
when compared to regular depth-first search: the size of this constant depends on the branching 
factor of the search space and the value of the depth increment. Changing the increment changes 
the order of exploration of the implicit search space and therefore the performance of the inference 

engine. 
Our inference engine performs iterative deepening on a generalized, user-defined notion of depth 

while respecting the overall search resource limit specified at query time. Fixing a depth-update 

4In practice, domain theory rules must be "standardized apart" (i.e., a unique variable renaming substitution 
must be applied to rules at application time) to avoid variable name conflicts between multiple occurrences of the 
same rule. For clarity, we ensure that variable name conflicts do not occur in the examples of this chapter, so the 
variable names in figures match those in corresponding original domain theory rules. 
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s(h(A)) 
s(?x) 

8(h(A)) 
s(?a) 

q(?b) 

q(?y) 

q(?y) 

r(h(A),?y) 
r(?a,?b) 

r(h(A),?y) 

r(?c,?d) 

P(A) 
P(?e) 

P(A) 

P(A) 

m(h(A),A) 
m(?c,?e) 

m(h(A),A) 

m(?f,?g) 

n(h(A)) 
n(?c) 

n(h(A)) 

n(h(A)) 

J(A) 

j(A) 

j(A) 

k(h(A)) 
k(?fl 

k(h(A)) 

k(h(?w)) 

Figure 2.1: Sample proof. Bold face font is used to indicate consequent nodes, while italic font 
corresponds to subgoal nodes. The upper expression is the node formula, while the lower expression 
is the node label. Double lines represent match edges, while rule edges are represented with single 
lines. 
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function (and thus a precise definition of depth) and an iterative-deepening increment establishes 
the exploration order of the inference engine. For example, one might define the iterative-deepening 
update function to compute depth of the search; with this strategy, the system is performing 
traditional iterative deepening. Alternatively, one might specify update functions for conspiratorial 
iterative deepening [37], iterative broadening [41], or numerous other search strategies. 
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Chapter 3 

Success and Failure Caching 

This chapter1 surveys our work on adaptive inference and reports on the experiments 
we have performed. In particular, it reports on our work with bounded-overhead caching 
for definite-clause theorem provers and describes a particular adaptive inference engine 
that is used within the ALPS system. 

3.1     Introduction 

A cache is a device that stores the result of a previous computation so that it can be reused. It 
trades increased storage cost for reduced dependency on a slow resource. The use of caches has 
been proposed for storing previously proven subgoals (e.g., success caching) in automated deduction 
systems [80]. Here the extra storage required to store successfully-proven subgoals is traded against 
the increased cost of repeatedly proving these subgoals. The utility of such a cache depends on 
how often subgoals are likely to be repeated; in the case of iterative deepening, we know a priori 
that subgoals are repeated frequently. 

In addition to caching successfully-proven subgoals, caching failed subgoals can also improve 
performance [37]. These failure caches record failed subgoals, along with the resource bounds in 
force at the time of the failures. Future attempts to prove a cached subgoal are not undertaken 
unless the resources available are greater than they were when the failed attempt occurred. Failure 
cache entries may record either an outright failure (i.e., the entire search tree rooted at the subgoal 
was exhausted without success) or a resource-limited failure (i.e., the search tree rooted at the 
subgoal was examined unsuccessfully as far as resources allowed, but greater resources may later 
yield a solution). Resource-limited failure cache entries must contain an additional annotation, 
describing the resources available at the time of the cached failure. 

Success and failure caches affect the search at OR-node choice points. In their simplest forms, 
they serve to prune the search space rooted at the current subgoal. Success caches act as extra 
database facts, grounding the search process, while failure caches censor a search that is already 
known to be fruitless. Either way, they serve as effective speedup techniques by dynamically 
injecting bias into the search, altering the set of problems that are solvable within a given resource 
bound. 

'This chapter is adapted from [90]. 
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3.2    Bounded-Overhead Caching 

A bounded-overhead cache is one that requires at most a fixed amount of space and entails a fixed 
amount of overhead per lookup. In our implementation, success and failure entries coexist in a 
single, fixed-size cache. At each OR-node choice point, the inference engine first checks the cache 
for a matching success entry (called a cache hit). If one is found, possibly by introducing new 
variable bindings, the subgoal is considered solved. If no matching entry is found, the inference 
engine checks for a failure entry. If it finds one with a sufficiently large resource limit, the subgoal 
is considered unsolvable, and the inference engine is forced to backtrack. If neither type of cache 
hit occurs, the inference engine proceeds to try proving the subgoal normally. When finished, it 
inserts a new entry into the cache: a success entry if the subgoal is solved, and a failure entry if no 
proof is found within the current resource bounds. 

Once the cache is full, adding a new entry entails deleting an existing one. A cache management 
policy is used to decide which existing entry should be replaced. Cache management policies are 
nothing more than heuristics that assign relative importance to cache entries. Simple replacement 
policies such as first-in-first-out (FIFO), least-recently used (LRU), and least-frequently used (LFU) 
are suggested by analogy with paged memory systems. These cache management strategies exploit 
knowledge about memory access patterns. For paged memory systems, empirical studies of memory 
traces have shown that both programs and data exhibit locality of reference; that is, access patterns 
tend to cluster in locally-constrained areas of memory. In automated deduction, one might expect 
iterative deepening to exhibit some property that can serve in place of locality of reference; an 
analytic understanding of this property would certainly aid in designing high-performance man- 
agement policies for automated deduction caches. For now, we continue to rely on simple policies 
such as LRU while actively studying the problem of designing high-performance cache management 
policies for iterative deepening. 

Using a fixed-size cache permits us to apply information acquired in the course of solving one 
problem to subsequent problems, while limiting the overhead associated with a caching scheme. 
Unfortunately, even a bounded-overhead cache may adversely affect performance. To see why this 
is so, consider the interaction of a simple success cache with the inference engine's backtracking 
behavior. When forced to backtrack over a subgoal that has matched a success cache entry, the 
inference engine will necessarily consider all alternative paths at that choice point. Since cache 
entries represent deductively entailed — and therefore redundant — information, some of the 
alternate paths considered at this choice point are subsumed by the matching cache entry that 
has just failed. Thus the inference engine will waste time exploring some alternate paths that are 
known a priori to be fruitless. By increasing the branching factor with redundant choice points, 
unsuccessful cache entries may actually cause an inflated number of nodes to be searched.2 

We can avoid this problem in a general sense by restricting the applicability of cache entries 
and changing the backtracking behavior of the inference engine at cache hits [37]. By permitting 
success cache hits only where the candidate cache entry is at least as general as the current subgoal, 
we can ignore alternative choice points when backtracking over a cache hit. Failure cache hits are 
also restricted to situations where the cache entry is at least as general as the subgoal, but in 
addition the current resource limit must be dominated by the resource limit associated with the 
cache entry. These cache hit generality constraints prevent a cache hit from binding variables in 
the current search context, eliminating the need to consider any alternate search paths that-may 
exist at this subgoal. Once a cache hit occurs, the entire search space rooted at that subgoal is 
effectively pruned and need not be explored upon backtracking. Thus, although imposing cache hit 

2This problem is related to the utility problem found in speedup learning systems; see Section 4.3 [69]. 
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generality constraints produces less frequent cache hits, it avoids adverse search effects altogether.3 

3.3    Evaluating Bounded-Overhead Caching 

This section empirically measures the performance of our caching system, contrasting various 
caching strategies and configurations. We have studied many aspects of cache design, includ- 
ing the relative performance of different cache management policies, the coexistence of success and 
failure entries in a unique cache, and the impact of redundant cache entries on system performance. 

3.3.1    Methodology 

It is difficult to extrapolate reliably from empirical data. In [94] we outline some common method- 
ological problems encountered in experimental evaluations of speedup learning systems. In [95], we 
present an experimental methodology for comparing speedup learning systems that avoids many 
of these pitfalls. Since caching can also be viewed as a form of speedup learning, we can adopt 
some of these techniques to our evaluation of caching. These techniques allow us to obtain a more 
precise, quantitative picture of the effect caching has on performance. 

The experimental methodology used here follows that introduced in [95] and later refined in [96] 
and [43]. It is based on a mathematical model of theorem proving as search; our basic assumption 
is that, independent of a particular theorem-proving system's implementation details, the size of 
the space explored — and therefore the time required to search — grows exponentially with the 
difficulty of the problem being solved. More formally, we can relate the time / to solve a problem 
of difficulty S in a search space with average branching factor b and per-node exploration cost c as 

t = cbs. (3.1) 

By measuring t over a collection of problems of known difficulties, we can derive estimates of b and 
c using standard methods of parametric statistics. Direct performance comparisons between two 
different theorem provers — or the same theorem prover operating with different cache configura- 
tions — solving representative suites of test problems can be made by comparing their respective 
b and c parameters. If b for one is lower than b for the other, then, in the limit (i.e., for difficult 
enough problems), we can conclude that the first theorem prover will perform systematically faster 
than the second. 

For the experiments reported here, we use a breadth-first search control system to solve each 
problem in the test suite and use the number of nodes explored (ej/s) as an approximation of 
problem difficulty S. Thus, given a number of datapoints of the form (log(ej/s),log(i)) obtained 
on a collection of test problems, we can obtain estimates of the regression parameters log(6) and 
log(c) using linear regression in accordance with the following regression model: 

log(t) « log(6) log(ei/s) + log(c). (3.2) 

A lower regression slope log(6) in general corresponds to a theorem prover whose performance scales 
better to larger problems. The main advantage of this methodology is that it allows us to predict 
performance on relatively large problems from data collected on relatively small problems. 

3 An unfortunate side effect of imposing generality constraints is the problem of introducing duplicate cache entries. 
Duplicate entries, if handled consistently, should eventually be deleted by any reasonable cache-management strategy. 
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3.3.2    Experiment 1 

In this first experiment, we are interested in comparing the performance of a non-caching theorem 
prover with an identical theorem prover that uses an unlimited-size success and failure cache. 

This study uses our depth-first iterative-deepening definite-clause theorem prover described 
previously in Section 2.3. As the theorem prover expands each subgoal, it checks the cache first, 
and only resorts to checking the database if necessary. The cache implementation is flexible, 
allowing the user to vary cache size and to specify arbitrary cache management strategies. Note 
that the theorem prover is not particularly fast, since it was designed primarily in order to support 
principled experimentation. For example, like the caching subsystem, the search strategy used 
by the theorem prover is flexible; it can be configured to perform iterative deepening, iterative 
broadening, conspiratorial best-first iterative deepening, or even simple breadth-first search. In 
fact, the same theorem prover (configured to perform breadth-first search) is used as the control 

system. 
The domain theory and problem set used for this experiment consist of 26 problems drawn from 

a simple situation-calculus formulation of the classic AI block-stacking world [106]. Each problem 
is solved by the control theorem prover, a non-caching breadth-first search configuration of the 
theorem prover. The smallest problem requires searching 4 nodes and corresponds to a derivation 
tree consisting of 4 nodes 1 level deep. The largest problem requires searching approximately 16,000 
nodes and corresponds to a derivation tree of 84 nodes 7 levels deep. The logarithm of the number 
of nodes explored log(eys) is recorded for each problem for use as the estimator of problem difficulty 

6. 
We performed two trials using the depth-first iterative-deepening theorem prover. The first 

trial involved no caching, while the second trial used an unlimited-size cache. Each trial consisted 
of solving all 26 problems presented in the same random order using a resource limit of 30,000 
nodes explored. In the second trial, the cache was not cleared between problems. Both trials 
were performed using a unit-increment iterative deepening strategy.4 We recorded elapsed time to 
solution (in milliseconds) for each of 26 problems solved, and we performed a two-parameter linear 
regression using Equation 3.2 as the regression model. 

Figure 3.1 illustrates the performance of the non-caching system. As might be expected, this 
system achieves an excellent fit (r2 = 99.8%), since the unit-increment iterative deepening system 
and the control system explore the search space in identical order. Intuitively, this helps to lend 
credence to our methodology's underlying mathematical model by illustrating how the number of 
nodes exploited by a control system can in fact be excellent predictors of CPU time performance 
for a different system operating with the same domain theory on the same problem set. 

Figure 3.2 shows the performance of the unlimited-size caching system. While the performance 
of the unlimited-size caching system is dependent on problem ordering, the performance of the 
non-caching system is not: nonetheless, the problems are presented in exactly the same random 
order as for the non-caching system of Figure 3.1. As noted previously, the cache is not flushed 
between problems. The 26 problems are solved in a total of 669.8 seconds, at which point the cache 
contains a total of 10,753 entries, 1,304 of which served to provide a cache hit at some time during 
the trial. 

The plot in Figure 3.2 suggests several striking observations. First, we note that almost all dat- 
apoints in this second plot have greater y-values than their corresponding datapoint in Figure 3.1: 
thus, on this randomly-ordered set of test problems, the unlimited-size caching system is slower 
than the non-caching system on almost every problem. In fact, the caching system is more than 

4 A unit increment may well produce the worst-case performance for iterative deepening. Depending on the problem 
population, increasing the increment value may substantially improve the system's performance. 
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Figure 3.1: Performance of a non-caching iterative-deepening theorem prover on 26 problems from 
the situation-calculus domain theory of Experiment 1. Each datapoint shown corresponds to one 
or more problems, since some problems have exactly the same solution characteristics. Total time 
to solve 26 test problems was 273.9 seconds. 
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Figure 3.2:  Performance of an unlimited-size caching iterative-deepening theorem prover on the 
same situation-calculus problem set of Figure 3.1.   Total time to solve all 26 test problems was 
669.8 seconds. 
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twice as slow as the non-caching system over the test problem set as a whole. Second, from the 
regression parameters obtained, it appears that the unlimited-size caching system has, as expected, 
a greater node exploration cost than the non-caching system. This greater node exploration cost c 
reflects the cache overhead costs and shows up in the plot as a larger y-intercept (log(c) in Equa- 
tion 3.2) value. Finally, given the lower computed regression slope for the unlimited-size caching 
system, we might expect that, on large enough problems, the caching system will be faster. 

Is this last conclusion warranted? Unfortunately, no: the problem lies in our methodological 
assumption that c is invariant for a given theorem prover, domain theory, and problem set. For 
the unlimited-size caching system, however, c clearly grows monotonically as more items are added 
to the cache. Thus while it might appear by extrapolation that, for large enough problems, the 
unlimited-size caching system will prove faster than the non-caching system, this may not be 
true given that the intercept value for the unlimited-size caching system will continue to increase.5 

Whether or not the unlimited-size caching system will ever prove to be quicker than the non-caching 
system depends on the implementation, domain theory, and problem distribution. 

There is one other interesting piece of information that can be reliably extracted from our 
experiment with the unlimited-size caching system. In particular, we would very much like to 
know the magnitude of the beneficial search effect possible due to caching. As noted previously, 
the beneficial search effect due to unlimited-size caching represents a sort of empirically measured 
best-case reduction in search available for any caching scheme. 

To isolate search effects due to caching from cache overhead, we make a small modification to 
our experimental methodology. Substituting t directly as the dependent variable in the experiment, 
we factor out the cache overhead leaving 

log(e) = log(6)log(eVs) (3.3) 

as the experimental regression model. This simplified model highlights implementation-independent 
search effects without conflating implementation-dependent cache overheads. The single-parameter 
regression equation also reflects the fact that proofs of problems that require exploring a single node 
(e.g., retrieving an axiom from the database) without caching will still require an identical amount 
work even if a cache is in use; thus the plot goes through the origin as expected. 

Figure 3.3 shows the search performance of the unbounded overhead success and failure caching 
system. Certain problems are helped (i.e., fewer nodes are explored) by the presence of cache 
entries, and corresponding datapoints shift downwards since the cost of solving any given problem 
with the control system is invariant. Other problems are not affected by the presence of cache 
entries, so their respective datapoints remain unchanged. 

Since the problems are presented in random order, linear regression — by minimizing the sum 
of the squares of the errors — provides a good estimate of the slope over the problem distribution 
as a whole. As the datapoints spread downwards, the regression slope decreases, reflecting the 
need to search fewer nodes on average over all problems in the population. The regression slope 
obtained here (log(6) = [0.796 ± .015]) implies that the system searches significantly fewer nodes 
than the breadth-first search control system, which would, by definition, yield a slope of exactly 
log(6) = 1 when measured against itself. A similar analysis for the non-caching system (plot not 
shown) yields a one-parameter regression slope of log(6) = [1.033 ± .004], indicating that the non- 
caching system explores a larger number of nodes than the control system. Again, this is to be 
expected, since unit-increment depth-first iterative deepening explores the space in precisely the 
same order as breadth-first search, but by performing iterative deepening will explore some nodes 
more than once. 

This last observation, of course, also implies that the computed regression parameters are not very meaningful 
here since they are computed using a regression model that assumes fixed c. 
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Figure 3.3: Search performance of an unlimited-size caching iterative-deepening theorem prover on 
the same situation-calculus problem set of Figure 3.1. Cache overhead effects are factored out. 

Thus this simple situation-calculus domain serves as an example of an application where unlimited- 
size caching is inadequate. More precisely, while this kind of caching may reduce the number of 
nodes explored in search of a solution (as is evident from our analysis of the search effects), it 
causes an overall decrease in performance in this domain presumably due to increased overhead. 
The goal of bounded-overhead caching is to capture as much as possible of the beneficial search 
effect without incurring excessive node exploration costs. 

3.3.3    Experiment 2 

In this experiment, we evaluated the performance of bounded-overhead caches across a variety of 
cache sizes and management strategies. The configurations tested here were 

• LRU replacement, 

• LFU replacement, 

• FIFO replacement, and 

• RANDOM replacement. 

These four systems were tested on all 26 problems using caches ranging from 10 to 1000 elements. 
As before, the problems were presented in the same random order for all trials; in addition, the 
caches are left undisturbed between problems.6 

6The RANDOM cache management strategy involves selecting an arbitrary cache entry for replacement and 
therefore involves minimal overhead. FIFO maintains the cache entries as a queue, placing new entries at the end of 
the queue while deleting the first queue element, while LRU is implemented as a modification of FIFO where a cache 
hit causes the corresponding cache entry to move to the end of the queue. Both of these strategies also entail minimal 
overhead. More problematic is LFU, since a naive implementation would entail a substantially higher cache overhead 
than the other bounded-overhead strategies. Instead, a variant of LRU called a creeping cache is used to approximate 
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Figure 3.4: Performance of four bounded-overhead caching schemes as a function of cache size. 
Performance is measured in terms of cumulative CPU seconds to solve the same 26 situation- 
calculus problems used in Experiment 1. The horizontal line corresponds to the performance of the 
non-caching system (273.9 seconds); recall the unlimited-size caching system requires 669.8 seconds 
to solve all 26 problems. 

The first question we would like to answer is whether or not a bounded-overhead caching 
system can outperform both the non-caching and the unlimited-size caching systems of the previous 
section. Since the resource limit given for each query was sufficient to solve every problem, as a 
first approximation we can simply plot cumulative solution times over the entire test suite.7 

Figure 3.4 shows the results of this experiment. There are two observations that bear men- 
tioning. First, for every cache management strategy tested, using a small cache initially causes 
an increase in time to solution. As the cache size is increased, performance improves and then 
degrades again. This behavior is consistent with our expectations; a very small cache bears much 
of the overhead costs yet yields little of the beneficial search effects. As the size grows larger, the 
beneficial effects of caching become evident but are eventually overwhelmed by increasing cache 
overhead. This analysis, of course, relies on a hidden, yet perhaps unwarranted, assumption that 
beneficial search effects increase monotonically with cache size. The second observation is that, 
while all four of the tested strategies behave in approximately the same fashion, LRU displays 
slightly better performance than the others. It is not possible to tell whether LRU's edge lies in 
lower cache overhead costs relative to the other strategies or in some increased beneficial search 
effect. The answer to this question hinges in part on implementation-specific aspects of the cache. 
In particular, while cache lookup costs are roughly equivalent for all implementations (modulo 
differences in actual cache contents, of course), the cost of maintaining the cache itself may differ 

a real LFU policy while displaying exactly the same overhead characteristics as LRU. A creeping cache operates by 
demoting a corresponding cache entry pointer by one position in the queue for every cache hit. A frequently hit entry 
will thus trickle back to the end of the queue where it is unlikely to be replaced. 

7Note that the use of cumulative CPU times does tend to skew the relative importance of individual problems by 
emphasizing the larger problems. While there might be other ways of presenting CPU performance data, the use of 
cumulative CPU times is simple, intuitive, and, most important, consistent with the literature. 
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Figure 3.5: Search performance of a bounded-overhead caching iterative-deepening theorem prover 
using LRU, FIFO, LFU, and RANDOM cache management strategies. The graph plots the empir- 
ically obtained one-parameter regression slope log(6), an indicator of the search space size, against 
the size of success and failure caches. The horizontal lines correspond to the search performance of 
the non-caching system (log(6) = 1.033) and the infinite-size caching system (log(&) = .796). 

from one strategy to the next. 
We can check both of these informal analyses by once again factoring out the implementation- 

dependent cache overhead costs and focusing on the implementation-independent search effects. 
We would like to know, first, how the magnitude of the beneficial search effect changes with cache 
size, and, second, if the different caching strategies display substantially different beneficial search 
effects. We again use the one-parameter regression model of Equation 3.3 to factor cache overhead 
costs out of the analysis. In Figure 3.5, we plot the value of the regression parameter log(6) against 
the size of the cache used for all four bounded-overhead cache management strategies listed above. 
We expect that the smaller cache sizes will have empirically measured slopes very close to the 
value obtained for the non-caching system (log(6) = [1.033 ± .004]), while larger cache sizes should 
approach the slope obtained for the unlimited-size caching system (log(6) = [0.796 ± .015]). 

We are now in a position to check the two observations cited earlier. First, we note that not 
only is the beneficial search effect due to caching increasing monotonically with cache size, but that 
most of this effect is evident even with relatively small caches. Second, we note that the search 
performance of different policies is relatively homogeneous, although LRU does show some slight 
edge for all cache sizes tested. This latter observation means that LRU's slight overall performance 
edge from Figure 3.4 is at least partially based on search effects rather than only differences in 
cache overhead. 

Notwithstanding LRU's slight edge, the search performance over all four strategies is remarkably 
uniform. There are two alternative interpretations for this striking similarity in search performance. 
The first interpretation is that the subgoals explored by a theorem prover do not fit any regular pat- 
tern of exploration. If this is true, than a random replacement strategy will provide adequate cache 
entry replacement guidance. The second interpretation is that the exploration pattern .of iterative 
deepening search strategies does exhibit some analogue to locality of reference, but that we are as 
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yet incapable of exploiting it because we simply do not understand it. This second interpretation 
leaves open the possibility that one might develop an analytic model of iterative-deepening explo- 
ration that will suggest an improved cache management strategy that would eventually outperform 
LRU. Selecting which of these two competing interpretations is correct is difficult. While we know 
that a hypothetical optimal caching system's performance should not exceed the performance of 
the unlimited caching system (log(6) = .796) for this particular problem ordering, we do not really 
know how it compares with LRU for fixed-size caches. 

When designing a hardware cache, one may resort to approximating the performance of an 
optimal or nearly optimal caching system by examining page-access traces collected during execu- 
tion of some benchmark programs. Unfortunately, we cannot rely on this kind of static analysis to 
predict the performance of a fixed-size cache for theorem proving. The reason is that, unlike paged 
memory systems where the page access pattern is determined by the program being benchmarked, 
the pattern of cache accesses is not fixed, but rather changes depending on the cache contents. A 
cache hit (or lack thereof) changes the search behavior of the system; thus it is simply not possible 
to use static trace information from one cache configuration to predict system performance with a 
different cache configuration. 

3.3.4    Experiment 3 

In the previous experiment, we tested cache management policies suggested by analogy to hardware 
systems. In this section, we begin to explore alternative cache management strategies based on 
more theorem-proving specific models of cache entry utility. One would hope that these strategies 
might more adequately reflect the underlying iterative-deepening search process, resulting in better 
performance than simple LRU caching. 

Traditional paged-memory hardware caching systems generally assume that the cost^of a page 
replacement is independent of the page being replaced. Cache management policies such as LRU, 
LFU, and FIFO rely at least implicitly on this assumption; a decision to replace a cache element is 
made based only on its past usefulness rather than on any notion of its original cost. Our success 
and failure cache entries are not all of uniform cost.8 In this experiment, we introduce and test two 
variants of the LRU cache management policy that do not assume all cache entries are of uniform 
cost. 

The cheapest least-recently used policy (CLRU) selects for replacement the least-recently used 
cache entry whose solution cost (expressed in number of nodes explored) is exceeded by the new 
cache entry's solution cost. If no cache entry matching this criteria is found, the new entry is 
simply discarded. In a similar fashion, the dearest least-recently used policy (DLRU) looks for the 
least-recently used cache entry whose solution cost is larger than the new cache entry's solution 
cost. These two policies explore fundamentally different intuitions about which cache entries are 
more likely to be useful in solving future problems. CLRU looks for relatively infrequent cache hits 
that produce large savings, while DLRU strives for more frequent, less dramatic, cache hits. 

While still qualifying as bounded-overhead caches, the CLRU and DLRU caches will carry higher 
cache overheads than the other caches described earlier; in a naive implementation, an unsuccessful 
cache insertion event may, in the worst case, take time proportional to the size of the cache. All 
other things being equal, even if more sophisticated implementations are available, the additional 

8 More recent work on caching systems for shared-memory non-uniform memory access (NUMA) machines must 
also take into account the differing latencies of local vs. remote data items. NUM A systems generally need only worry 
about two possible costs: cheaper local access as opposed to more expensive remote access. For inference engines, 
of course, success and failure cache entries are not of uniform cost and, unlike the binary NUMA model, may be 
arbitrarily expensive. 
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Figure 3.6: Performance of CLRU and DLRU compared with LRU as a function of cache size. 
Performance is measured in terms of cumulative CPU seconds to solve the same 26 situation- 
calculus problems used in Experiment 1. The horizontal line corresponds to the performance of the 
non-caching system (273.9 seconds); recall the unlimited-size caching system requires 669.8 seconds 
to solve all 26 problems. Note that the vertical scale is compressed with respect to Figure 3.4. 

bookkeeping required will result in higher cache overheads than, for example, simple LRU. 
Figure 3.6 plots the cumulative CPU time required to solve all 26 problems against cache size 

for CLRU, DLRU, and LRU. While DLRU significantly outperforms LRU, CLRU's performance is 
much worse than either of the other two strategies. In fact, even from a qualitative perspective, 
these three strategies display markedly different performance curves. Unlike LRU, DLRU provides 
an immediate gain in performance even for very small cache sizes; there is no initial degradation 
due to the extra cost of operating a cache followed by performance improvement as the beneficial 
search effects counteract the cache overhead. On the other hand, CLRU's performance degrades 
immediately and continues to get worse as the cache size increases. 

Figure 3.7 plots the search performance of CLRU, DLRU, and LRU as a function of cache size. 
Given the respective performances of these policies shown in Figure 3.6, we would expect DLRU 
to explore the smallest space, followed by LRU and CLRU. While our expectations regarding the 
relative sizes of the spaces explored by CLRU and LRU are met, DLRU's performance advantage 
does not, surprisingly enough, seem based on a reduction in search space. 

One explanation for CLRU's poor performance is that it might be possible to fully populate 
the cache with expensive — but useless — cache entries that are never replaced because they 
are more expensive than the entries being added. To test this hypothesis, we implemented a 
variant of CLRU called probabilistic cheapest least-recently used that allows a new entry to replace 
a more expensive existing cache entry with probability inversely proportional to cache size. In this 
fashion, a new cache entry always has at least a chance to replace an existing entry even if the 
cost-based replacement criteria are not strictly met. Testing of this variant policy supports our 
hypothesis, since the new search performance (not shown) was found to closely approximate the 
search performance of LRU. 

The behavior of DLRU is somewhat more difficult to explain. On one hand, the overall perfor- 
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Figure 3.7: Search performance of CLRU and DLRU compared with LRU as a function of cache 
size. The graph plots the empirically obtained one-parameter regression slope log(6), an indicator of 
the search space size, against the size of success and failure caches. The horizontal lines correspond 
to the search performance of the non-caching system (log(6) = 1.033) and the infinite-size caching 

system (log(6) = .796). 

mance (Figure 3.6) is better than LRU, but on the other hand, the search performance (Figure 3.7) 
is worse than LRU. These results imply that DLRU's performance advantage is based on lower 
cache overhead rather than reduced search. However, we also know that the implementations of 
DLRU and CLRU are identical, save for the sign of a single arithmetic comparison. Furthermore, 
we know that for identical cache contents both DLRU and CLRU carry, by design, cache overhead 
costs that dominate the overhead cost of LRU. Thus it is difficult to see how DLRU's average node 
expansion cost can be low enough to more than counteract the increase in nodes searched by DLRU 

with respect to LRU. 
The clue to understanding this inconsistency lies in the relative proportion of success and failure 

entries within the caches. At the end of the problem suite, about 85% of the DLRU cache is devoted 
to failure entries, while LRU contains only about 40% failure entries and CLRU contains zero (or at 
most very few) failure entries. Given that we are performing iterative deepening, and that therefore 
many failures are due to encountering relatively small resource limits, we would expect that failures, 
on average, will be less costly than successes. Thus we would expect DLRU to populate its cache, 
on average, with a larger number of failure entries than CLRU. 

This observation also helps to explain the measured difference in cache overhead between DLRU, 
CLRU, and LRU. Recall that we expected DLRU and CLRU to display identical overhead costs for 
identical cache contents. As the proportional differences in failure and success entries clearly shows, 
the cache contents are not identical. Thus if failure entries are inherently cheaper to maintain than 
success entries, we would expect that DLRU, on average, would display lower cache overhead costs 
than either LRU or CLRU based on the difference in relative proportion of failure to success entries. 
We explored this issue in the next experiment. 
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Figure 3.8: Performance of success-only and failure-only caching systems using an LRU replacement 
policy as a function of cache size. The mixed cache LRU system of Experiment 2 is included 
for comparison. Performance is measured in terms of cumulative CPU seconds; the horizontal 
line corresponds to the performance of the non-caching system (273.9 seconds). Recall that the 
unlimited-size caching system requires 669.8 seconds to solve all 26 problems. 

3.3.5    Experiment 4 

In this experiment we examined the respective contributions of success and failure cache entries. 
Recall that our caching system allows both types of cache entries to coexist in a single cache. 
Alternative implementations might maintain separate success and failure caches, or might perform 
only one kind of caching. Naturally, the relative worth of success and failure caching depends on 
the domain as well as the implementation, since different types of cache hits may entail a different 
magnitude of beneficial search effect, and failure and success cache overheads may also differ. In 
this experiment, we ran the same set of 26 blocks world problems in the same random order using 
both success-only caching and failure-only caching systems. Our intent was to measure the relative 
contributions of success and failure caching to reducing the search space, as well as to investigate 
possible implementation-dependent differences in cache overheads. As a basis for comparison, we 
also included the mixed-mode LRU caching scheme of Experiment 2. 

Figure 3.8 compares the performance of success-only and failure-only caching with the mixed 
caching system used in the previous experiments. As we predicted, the failure-only system's per- 
formance curve matches qualitatively that of DLRU in the last experiment, while the success-only 
system's curve approximates that of the mixed LRU cache. To determine if the root cause is an 
actual difference in overhead for the two types of cache, Figure 3.9 plots the search performance 
of all three strategies. Given that the reductions in search space do not correspond with system 
performance plotted in Figure 3.8, we must conclude that per-node exploration costs are far from 
uniform for equivalent cache sizes. This conclusion is in fact easily confirmed via direct inspection 
of the data; for example, for 100 element caches, the mixed-mode cache explored a total of 18,815 
nodes in 262.1 seconds (13.9 msec/node) over the entire test suite. The success-only system explored 
41,120 nodes in 323.1 seconds (7.9 msec/node), while the failure-only system explored 41,549 nodes 
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Figure 3.9: Search performance of success-only and failure-only caching systems using an LRU 
replacement policy as a function of cache size. The mixed cache LRU system of Experiment 2 is 
included for comparison. The graph plots the empirically obtained one-parameter regression slope 
logt», an indicator of the search space size, against the size of success and failure caches. The 
horizontal lines correspond to the search performance of the non-caching system (log(6) = 1.033) 
and the infinite-size caching system (log(6) = .796). 

in only 237.4 seconds (5.7 msec/node). How can we account for these fundamentally different node 
expansion costs? That such differences actually exist should not be surprising; success and failure 
entries are fundamentally different sorts of things. While the precise magnitude of the difference is 
undoubtedly specific to this implementation, any implementation would almost necessarily exhibit 
some difference in overhead cost for manipulating success and failure entries. 

Given the relative node expansion costs, one might question the utility of caching success entries 
in this implementation. With the exception of 70 and 100 element caches, failure-only caches 
outperform mixed-mode caches for all other tested cache sizes (success-only caching performed 
poorly for all tested cache sizes). Even in the region where mixed-mode caching is faster than failure- 
only caching, the difference is not very large, and one might argue that the added performance does 
not warrant the additional implementation complexity. However, repeating this same experiment 
using a DLRU policy (the policy with the best measured performance in Experiment 2) supports 

quite a different conclusion. 
Figure 3.10 plots the performance of the same three cache configurations as Figure 3.8, but 

with DLRU cache management as opposed to LRU cache management. In this plot the relative 
performance of the three configurations differs significantly from the relative performance of the 
LRU systems of Figure 3.8. Here, the mixed-mode cache system operating with the DLRU policy 
always outperforms the comparable failure-only system; the 100 element cache using a DLRU policy 
displays the best performance of any system tested in this chapter on this suite of problems. In 
addition, we note that the success-only system performs better than failure-only and the mixed- 
mode systems on very small cache sizes. We conclude that one should not discount the importance 
of success cache entries to the overall performance of the system. 
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Figure 3.10: Performance of success-only and failure-only caching systems using a DLRU replace- 
ment policy as a function of cache size. The mixed cache DLRU system of Experiment 3 is included 
for comparison. Performance is measured in terms of cumulative CPU seconds; the horizontal line 
corresponds to the performance of the non-caching system (273.9 seconds). Recall the unlimited- 
size caching system requires 669.8 seconds to solve all 26 problems. 

3.3.6    Experiment 5 

Given that we have established the importance of both success and failure cache entries, we next 
turn our attention to the best relative proportion of these two types of cache entries. Should 
success and failure entries be managed separately in two smaller, separate, caches, or should they 
be allowed to intermingle in a single cache? If managed separately, what relative sizes should be 
chosen for the two caches? 

In our previous tests using a mixed-mode DLRU cache (Experiment 3), we note that the suc- 
cess/failure ratio measured at the completion of the trial varied from 0/100 to 26/74 percentage of 
total cache size. For the smaller cache sizes (10 and 25 elements), no success entries were retained at 
all. The largest percentage of success entries (26%) occurred with a 250 element cache, and tapered 
off to 13% on the 1000 element cache trial. In the current experiment, we tested an alternative 
dual-cache implementation against the mixed-mode cache system. We ran four new DLRU trials 
for each cache size, fixing the ratios of success to failure cache sizes to 20/80, 40/60, 60/40, and 
80/20 percentage of total cache size. We compared these results to the failure-only (i.e., 0/100 
success/failure ratio) and success-only (i.e., 100/0 success/failure ratio) systems from Experiment 
4 as well as the mixed-mode DLRU performance of Experiment 3. 

Figure 3.11 plots the performance of all seven tested systems. This plot is consistent with several 
previously mentioned observations. First, it is clear that a mixture of success and failure entries 
generally outperforms a system that only performs one of success or failure caching (an exception is 
made for very small cache sizes, where success-only caching performs quite well). Second, we note 
that when the caches are managed separately, a larger proportion of failures to successes generally 
entails better performance. One might suspect that part of this effect may be due to the lower 
overhead costs associated with manipulating failure entries. 
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Figure 3.11: Performance of an assortment of dual-cache implementation trials compared to success- 
only, failure-only, and mixed-mode caching systems using a DLRU replacement policy as a function 
of cache size. Performance is measured in terms of cumulative CPU seconds; the horizontal line 
corresponds to the performance of the non-caching system (273.9 seconds); recall the unlimited-size 
caching system requires 669.8 seconds to solve all 26 problems. 
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Figure 3.12: Search performance of a selection of dual-cache systems compared to success-only, 
failure-only, and mixed-mode caching systems using a DLRU replacement policy as a function of 
cache size. The graph plots the empirically obtained one-parameter regression slope log(b), an 
indicator of the search space size, against the size of success and failure caches. The horizontal 
lines correspond to the search performance of the non-caching system (log(6) = 1.033) and the 
infinite-size caching system (log(6) = .796). 
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Figure 3.12 shows the search performance of the same seven systems. We note that all of the 
fixed-proportion systems produce roughly the same amount of search reduction; thus we conclude 
that the increased performance observed with a larger proportion of failures is probably due to 
differing relative overhead costs between success and failure entries. On the other hand, it is 
equally clear that the dynamically-managed mixed-mode cache gets at least some of its performance 
advantage from actual reductions in search space rather than simply differences in relative cache 
overhead. It would certainly appear — at least for this cache management strategy and test domain 
— that forcing success and failure entries to coexist and fight for survival on a uniform basis is 
the best policy over a broad range of cache sizes, resulting in greater search reduction and better 
overall performance. 

3.3.7    Experiment 6 

In this experiment, we examined the effect of redundant cache entries on the performance of the 
system. A redundant entry is an entry that is either identical to or subsumed by a different cache 
entry. Redundant cache entries arise due to the imposition of cache hit generality constraints 
and also as a result of iterative deepening and failure caching. They reduce the performance 
improvements obtained with bounded-overhead caching by occupying a portion of the cache with 
redundant — and therefore useless — information. In addition, the presence of redundant cache 
entries may interfere with the cache replacement policy; if multiple entries exist for a given query, 
the usefulness of each of the entries may seem artificially low. 

To see how multiple entries can arise, consider a subgoal q(lx) where candidate success entries 
q(a), q(b), and q(c) are already present in the cache. Since the cache entries are less general than 
the subgoal, these entries are not allowed to cause a cache hit. If the theorem prover eventually 
solves the q{tx) subgoal while binding 1x to ß, a new success entry q(a) is added to the cache, 
which already contains a copy of this entry. Alternatively, if the theorem prover manages to solve 
the qClx) subgoal in its most general form, the new success cache entry q(1x) renders the existing 
entries q{a), q(b), and q(c) obsolete. 

A second source of redundant cache entries is the natural interplay between iterative deepening 
and resource-limited failure caching. Consider a subgoal q(a) that almost matches a candidate 
failure entry q(a) in the cache, where the problem is that the resource annotation on the cache 
entry is smaller than the resources currently available for proving the subgoal. If the prover fails to 
prove q(a) within the larger current resource limit, we can simply update the resource annotation 
on the original failure entry (if the original failure entry is still in the cache at failure time). 
Alternatively, we can simply add a new failure entry with the larger resource annotation and trust 
the cache replacement policy to discard the other, less general, entry at some time in the future. 

There are two approaches for dealing with this problem. The first approach is to check for 
redundant entries whenever a new cache entry is made, at some additional overhead cost.9 The extra 
overhead may be more than outweighed by increased cache efficiency. For example, a redundancy- 
free infinite size caching system requires 480.7 seconds to solve all 26 problems, leaving 4,216 entries 
in the cache, 697 of which provided cache hits at some point during the trial. When compared 
with the 10,753 entries and 669.8 seconds required by the standard infinite size caching system, 
it is clear that the extra redundancy check pays off. Note, however, that even with redundancy 
checking the infinite size cache does not achieve the level of performance obtained by some of the 
bounded-overhead cache implementations. 

9 Sophisticated indexing techniques may allow the redundancy check to occur as a side-effect of cache insertion. 
Nevertheless, while the magnitude of the additional overhead may be limited, some amount of additional overhead is 
inevitable. 
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Figure 3.13: Performance of DLRU caching both with and without redundant entries allowed 
as a function of cache size. As in previous experiments, the horizontal line corresponds to the 
performance of the non-caching system (273.9 seconds); recall the unlimited-size caching system 

requires 669.8 seconds to solve all 26 problems. 

The second approach is particular to fixed size caches. The idea is to ignore the problem and 
trust the cache management policy to eventually reclaim space allocated to redundant entries 
This approach requires a cache retrieval algorithm that guarantees the same entry is retrieved 
on identical successive queries regardless of any redundant entries that may be lurking within the 
cache. Management policies such as LRU that are based on the notion of recency have this property; 
the RANDOM cache replacement policy does not. Note that this approach requires no additional 

overhead: we simply let the cache take care of itself. 
In this experiment, we again used the same set of 26 situation-calculus problems used in the 

previous experiments. A version of the mixed-mode DLRU caching system was altered so that 
an extra cache lookup is performed at cache insertion time in order to check for redundant cache 
entries. We compared this system with the same mixed-mode DLRU caching system of Experiment 
3. The standard DLRU caching system sorts candidate entries so that older entries are preferred 
over newer ones, ensuring that redundant entries are never responsible for cache hits. 

Figure 3.13 plots the performance of the two tested systems. Clearly, the additional over- 
head required to censor redundant entries overwhelms any added search benefit. This is strictly 
an implementation-dependent result: different implementations will have different overhead char- 
acteristics and thus may produce different overall performance. We can, however, obtain some 
estimate of how much search reduction benefit can be expected when censoring redundant en- 
tries. Figure 3.14 plots the search performance of the two systems. As expected, the standard 
system requires a larger cache to attain the same search performance as the redundancy-free sys- 
tem, although the search performance advantage of the redundancy-free system does not appear 
to be terribly large. Of course, the decision to censor redundant entries can only be made in 
an implementation-specific manner by fully investigating the cache overhead/search performance 
tradeoff for a particular system. Implementing a more efficient scheme for censoring redundant 
entries that reduces the associated overhead will naturally tilt this decision in favor of censoring 
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Figure 3.14: Search performance of DLRU caching both with and without redundant entries allowed 
as a function of cache size. The graph plots the empirically obtained one-parameter regression slope 
log(6), an indicator of the search space size, against the size of success and failure caches. The 
horizontal lines correspond to the search performance of the non-caching system (log(6) = 1.033) 
and the infinite-size caching system (log(6) = .796). 

redundant entries. 

3.4     Summary of Bounded-Overhead Caching 

Our results have shown that bounded-overhead caching can be beneficial for definite-clause theorem 
proving systems. We have justified the use of such caches on the basis of a particular application 
context: the use of a theorem prover to solve many related problems drawn from a single problem 
distribution. We believe this application context is a realistic one for many real applications in arti- 
ficial intelligence, deductive retrieval, and logic programming, and have shown how the traditional 
approach to caching for theorem proving, that is, the use of unlimited-size caches, is inappropriate 
in one instance of this general application context. Based on our experimental study, we have pro- 
posed a new bounded-overhead cache management policy we call dearest least-recently used, and 
have shown how this policy outperforms other, perhaps more obvious, cache management policies 
in at least one implementation and in one test domain. In summary, for this particular application 
context and this particular theorem prover, a 100-element DLRU mixed mode success/failure cache 
provides the best overall performance as measured by smallest total CPU time to solve all the 
problems in the test suite. 

How well do these empirical results scale? There are three aspects to this important question. 
First, one might ask whether the results obtained with these particular theorem prover and cache 
implementations are indicative of results obtained with other implementations. We have been 
quite careful to distinguish between implementation-dependent results (such as the cumulative 
CPU curves of Figures 3.1, 3.2, 3.4, 3.6, 3.8, 3.10, 3.11, and 3.13) and implementation-independent 
results (such as the search performance curves of Figures 3.3, 3.5, 3.7, 3.9, 3.12, and 3.14). Thus 
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some results, such as the recommendation to forego redundancy-free caching in Experiment 6, 
depend on aspects of the implementation: in this case, the exact tradeoff between the added cache 
overhead and the extra search performance edge due to redundancy-free caching. In a similar 
fashion, the choice of cache size and management policy for best performance are implementation- 
dependent results. Other results, such as the relative search performance of the different caching 
strategies, are independent of the implementation altogether. 

A second concern is whether the results scale from small problems to larger problems within 
the same domain. Our experiments give better reason to believe the results scale across problem 
size than do most other experiments. Because of the experimental methodology employed, we can 
extrapolate from small problems to large with the full faith we have in the underlying model (a 
model that just acknowledges that search cost grows exponentially with problem difficulty). 

Finally, one might ask if the results obtained in this problem domain can be expected to gen- 
eralize to other problem domains. Unfortunately, until an underlying model of domain theories is 
discovered that supports extrapolation across domains (like our model of theorem proving supports 
extrapolation over size), any results remain strictly domain-dependent. Thus, one should take these 
results as indicative of what can be achieved rather than a promise of what will be achieved. 
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Chapter 4 

Explanation-Based Learning 

This chapter surveys our work on adaptive inference and reports on the experiments we 
have performed. In particular, it reports on our work with bounded-overhead caching for 
definite-clause theorem provers and with the EBL* family of explanation-based learning 
algorithms. We cover the integration of multiple speedup techniques and discuss appro- 
priate configurations of cache and explanation-based learning. Finally, we describe a 
particular adaptive inference engine that forms the core of the ALPS system.1 

4.1    Introduction 

In this section, we examine a second speedup technique, explanation-based learning (EBL). As we 
have seen in Section 3, perhaps the simplest way to increase the performance of a resource-limited 
problem solver is to cache f(root(p)) = q6 from each proof p of each successful problem-solving 
episode as a new fact in the domain theory.2 Unfortunately, this kind of rote learning is overly 
constraining, in the sense that there may exist another form of the query, provable with the same 
pattern of reasoning implicit in the proof of the current example, which will not match the cached 
entry. 

Much more desirable, therefore, is some mechanism by which the chain of logical reasoning used 
in the proof can be generalized — so as to be more useful — and then retained and reused. This 
is the essence of EBL: we operate on the structure supporting root(p), that is, the subtree rooted 
at m(root(p)), in order to generalize it in some validity-preserving manner, and then extract (or 
chunk) a new, more general rule (called a macro-operator) to extend the domain theory. 

Definition 6 : A generic EBL algorithm generic-ebl has the form 

function generic-ebl(p:proof):rule; 
begin 

transform(p); 
return chunk(p); 

end 

where p is the original proof, and transform(p) leaves the proof p in a valid state. 

What transformations are required to generalize a proof? Typical transformations performed by 
EBL algorithms involve pruning away portions of the proof tree. If some of the leaves of a proof tree 

sThis chapter is adapted from [90]. 
2See Chapter 2.2 for a description of the notation used. 
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are unmatched subgoal nodes (i.e., m(ns) = 0) then we say the proof is a partial proof. Partial proofs 
can still be valid; a valid partial proof tree is a demonstration that f(root(p)) = f{m(root(p))) is 
implied by the conjunction of its premises, or unmatched leaf subgoals. The chunk function creates 
a macro-operator that summarizes the logical argument supporting p, thus making this relationship 
between the premises and m(p) explicit. 

function chunk(p : proof) : rule; 
begin 

return I /(m(root(p))) <- /\ /(n) > ; 
^ n£premises(m(root(p))) ) 

end 

function premises(n : node) : set of node; 
begin 

if consequent-node?(n) then return    (J   premises(s); 
s£r(n) 

elseif subgoal-node?(n) A m(n) = 0 then return {n}; 
else return premises(m(n)); 

end 

Of course, if there are no unmatched leaf subgoals in p, then premises(m(root(p))) = 0, and the 
macro-operator obtained will have no antecedents. Hence rote learning is a special case of generic- 
ebl. 

function rote(p : proof) : rule; 
begin 

return chunk(p); 
end 

For the proof of Figure 2.1, this procedure would produce the new macro-operator 

s(h(A)) - . 

Logically, this procedure is equivalent to simply adding the new fact s(/i(A)) = f(m(root(p))) = 
f(root(p)) = q6 to the domain theory. 

4.2    A Reconstruction of Traditional EBL 

Given the relationship between EBL and rote learning just described, it is clear that the added 
power of EBL comes from the proof transformations applied before chunking. Traditional EBL 
algorithms, such as the EBG [71] and EGGS algorithms [73], generalize explanations by pruning 
portions of the proof, leaving some number of subgoals unmatched. This effectively relaxes the 
constraints once imposed by the pruned portions of the proof: once the proof's validity is restored, 
a macro-operator can be constructed that summarizes the general version of the logical argument 
used in the original proof. The macro-operator is added to the original domain theory with the 
provision that, where applicable, it takes precedence over other rules. The addition of the macro- 
operator will not change the deductive closure of a domain theory, although it may well have a 
significant effect on the future efficiency of the prover. 
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A traditional EBL algorithm can be reconstructed as a structured application of the following 
three basic proof transformation operators: 

Definition 7 : Operator 1 (Specialization). Given a node n and a new expression a that is a 
substitution instance of the node formula, replace the node formula with the new expression: 

Opl(n, a) : if a C f(n) then f(n) <= a. 

Definition 8 : Operator 2 (Generalization). Given a node n and a new expression a that is both 
a substitution instance of the node label and at least as general as the node formula, replace the 
node formula with the new expression: 

0p2(n,a) : if f(n) CaC l(n) then f(n) <= a. 

Definition 9 : Operator 3 (Match Edge Pruning). Given a subgoal node ns, delete the entire 
subtree below it: 

OpZ(ns) : m(ns) <= 0. 

We can use these three operators to reconstruct a traditional EBL algorithm. As noted earlier, 
the general idea is to first prune away a portion of the proof, leaving some number of unmatched 
subgoal nodes, then maximally generalize the proof while still guaranteeing its validity, and finally 
extract a new macro-operator using the previously introduced function chunk: 

function ebl(p : proof) : rule; 
begin 

trim(root(p)); 
lift(root(p)); 
return chunk(p); 

end 

where trim and lift together constitute the proof transformation step. Traditional EBL algorithms 
differ in the exact criteria used to prune the proof (i.e., trim) as well as the process used to restore 
the validity of the proof (i.e., lift). The amount of pruning they perform crucially affects the 
future usefulness of the rule that can be learned from an explanation. This quality of usefulness is 
traditionally called operationality [6, 48, 55, 74, 75, 91]. It is impossible to determine in isolation 
whether a new rule will be useful: a formal measure of operationality, in the sense of guaranteeing 
improved problem-solving performance, has to take into account the distribution of future queries 
as well as what other rules are present in the domain theory. 

For this reason, EBL systems have in the past relied on various operationality heuristics to guide 
the pruning process. Perhaps the simplest such heuristic is to flag some predicates as operational 
a priori, as in [71]. This approach is not always adequate [32], but it does have the advantage 
of being explicit. More sophisticated applications of EBL often have more sophisticated notions 
of operationality. For example, the ARMS system [92, 93] uses syntactic heuristics keyed on the 
structure of an explanation to determine where to prune. Other operationality heuristics that 
depend on the semantics of the explanation might also be used; unfortunately, such heuristics are 
often buried deep within a system, and thus they are often not rendered explicit. 

Our reconstruction of traditional EBL relies on a very simple operationality heuristic. Suppose 
a subgoal is matched to a leaf consequent node, that is, a domain theory fact. It is reasonable to 
assume that a different version of the subgoal, perhaps with some alternative set of bindings, could 
also be proven by retrieving the same or a different domain theory fact. 
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procedure trim(n : node); 
begin 

if consequent-node?(n) then for s G r(n) do trim(s); 
elseif subgoal-node?(n) A r(m(n)) = 0 then 0p3(n); 
else (rim(m(n)); 

end 

The condition r(m(n)) = 0 in the fourth line of procedure trim is the same operationality 
criterion used implicitly in the EGGS algorithm as well as in [35]. This procedure simply strips 
all reference to specific domain theory facts used in the construction of the original proof. Once 
these axioms are removed, the remaining proof is still valid, since Operator 3 does not affect any of 
the validity conditions of Definition 5. However, the resulting proof is typically overly constrained, 
since the binding constraints that were imposed on the proof by the deleted leaf consequent nodes 
are still implicit in the proof node's formulae. The next step, then, is to "lift" the proof, producing 
a maximally general yet still valid partial proof structure. 

procedure lift(n : node); 
begin 

relax-bindings(n); 
apply-bindings(n, collect-bindings (n, $)); 

end 

First, we relax all of the binding constraints using Operator 2 by replacing each element of the 
proof with its corresponding element from the original domain theory, which is available as the 

node label: 

procedure relax-bindings(n : node); 
begin 

Op2(n,l(n)); 
if consequent-node?(n) then for s G r(n) do relax-bindings(s); 
elseif subgoal-node?(n) A m{n) ^ 0 then relax-bindings(m(n)); 

end 

The resulting partial proof no longer contains reference to the constraints implicit in the pruned 
consequent nodes, but in general it violates the second validity condition of Definition 5. Next, we 
extract those binding constraints necessary to restore the validity of the proof (i.e., the bindings 
required to unify the formula and label fields of each node along with the bindings required to 
enforce unification across proof match edges) and apply them uniformly throughout the entire 

proof. 

function collect-bindings(n : node, 0 : substitution) : substitution; 
begin 

6<= unify(l(n),f(n),6); 
if consequent-node?(n) then for s G r(n) do 6 <= collect-bindings(s,6); 
elseif subgoal-node?(n) A m(n) ^ 0 

then 0 <= collect-bindings(m(n),unify(f(n),f(m(n)),0); 
return 0; 
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end 

Here the function unify(x,y,9) returns the substitution 9' that is the result of merging 9 with 
the most general unifier of x and y. 

Applying the binding constraints just collected requires a simple recursive descent algorithm 
that uses Operator 1 to specialize each node. 

procedure apply-bindings(n : node,9 : substitution); 
begin 

Opl(n,f(n)9); 
if consequent-node?(n) then for s G r(n) do apply-bindings(s,9); 
elseif subgoal-node?(n) A m(n) ^ 0 then apply-bindings(m(n), 9); 

end 

Once the process terminates, we have restored the violated validity conditions, ensuring that 
the resulting proof is once again valid. Figure 4.1 shows what remains of the sample proof of 
Figure 2.1 once the process is complete. 

We are now ready to extract a new macro-operator using function chunk. For the proof in 
Figure 4.1, this produces the new macro-operator: 

s(U) <- q(U) A p(lg) A j(lg) A k(la) A n(la) 

which is considerably more general than the macro-operator obtained by rote learning. 

4.3    The Utility Problem 

Once a new macro-operator has been added to the domain theory, the hope is that when a future 
query requires a similar proof structure, this will be found more quickly thanks to the presence of 
the acquired macro-operator. If the distribution of future problems is favorable, then the prover 
should exhibit better overall (i.e., faster) performance. It may even solve additional problems that 
were previously unsolvable within a fixed resource bound. Unfortunately, the effect of EBL may 
actually be to slow down the prover. This undesirable effect has been dubbed the utility problem 
[36, 70]. 

To see how this can happen, consider the example from the previous section. The acquired 
macro-operator is intended to accelerate search by providing an alternative, shorter, path to the 
solution within the original search space defined by the domain theory. However, if this macro- 
operator does not lead to a solution for a particular problem, it just defines a redundant path in 
the search space, and using it causes a region of the search space to be searched again in vain. 

While it is impossible to avoid the utility problem altogether, it is possible to minimize its 
impact. This goal is achieved by reducing both the frequency of inappropriate uses of acquired 
macro-operators (i.e., uses that do not lead to a solution) as well as the cost incurred when an 
inappropriate use occurs. For example, all else being equal, the overhead of exploring an inappropri- 
ate macro-operator typically grows with the number of antecedents in that macro-operator. So for 
the example above, it is preferable to learn the equally valid (and equally general) macro-operator: 

s(la) <- fc(?o) A n("!a). 

rather than the macro-operator learned by the traditional EBL algorithm, because this macro- 
operator will entail a smaller performance penalty when used inappropriately thanks to its smaller 
number of antecedents. 
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s(?a) 
s(?x) 

s(?a) 
s(?a) 

q(?d) 
q(?b) 

r(?a,?d) 
r(?a,?b) 

r(?a,?d) 
r(?c,?d) 

P(?g) 
P(?e) 

m(?a,?g) 
m(?c, ?e) 

m(?a,?g) 

m(?f,?g) 

n(?a) 
n(?c) 

j(?8) 
j(?8) 

k(?a) 

Figure 4.1:  Sample proof of Figure 2.1 after applying procedure ebl.   The new macro-operator 
s(la) <- q(ld) A p(1g) A j{1g) A fc(?a) A n{1a) is produced by chunk from this transformed proof. 
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In order to reduce the frequency of inappropriate uses, one might even prefer to learn a more 
specific version of the macro-operator, such as: 

s(h(tw)) «- n(h(tw)). 

This last macro-operator may not be as useful as the previous one, since its less-general consequent 
expression means it will be applicable in fewer situations. For this same reason, however, it may less 
often be used inappropriately. Even when used inappropriately, it will entail a smaller performance 
penalty, because its single antecedent is a more-specific and therefore easier to prove version of one 
of the two antecedents of the previous macro-operator. 

An example of where the utility problem is serious is the propositional calculus domain of 
Principia Mathematica [115] used by Newell, Shaw and Simon in their landmark work on the Logic 
Theorist (LT) [77], as adapted for definite-clause theorem provers by [78] and later [72]. The 
traditional EBL algorithm of Section 4.2 performs poorly in the LT domain. In this domain, an 
EBL algorithm should acquire new macro-operators of a very specific type. For example, from a 
proof of thm(or{P, not(P))), we want to learn 

thm(or(tx, not(tx))) *- . 

Given the absence of antecedents, this is essentially a new domain theory fact. We call this type 
of macro-operator a generalized cache entry by virtue of its similarity with success caching (i.e., 
rote learning), which, for this example, would acquire the strictly more-specific (and therefore less 
useful) entry: 

thm(or(P, not(P))) *- . 

Generalized cache entries minimize the utility problem: the only overhead in using a generalized 
cache entry is the added cost of indexing the entry. Yet no existing general-purpose EBL algorithm 
is capable of recognizing special situations where generalized caching is appropriate.3 

4.4    Learning from Determinations 

A second problem inherent in traditional EBL algorithms can best be introduced by an example. 
Suppose an artificially intelligent accountant knows that if two stores are located in the same state, 
then the sales tax rate at both stores must be the same: 

rate{ty, tr) <- state(tx, tu) A stately, tu) A rate(tx, tr). 

Given the common location of Gucci and Cartier and the sales tax rate at Gucci, one can find the 
rate at Cartier as the proof tree in Figure 4.2 shows. 

A useful special-purpose version of the original rule: 

rate(tx, 7%) <- state(tx, NY) 

states that the sales tax rate at any store in New York is seven percent. This new rule not only 
follows deductively from the original domain theory, but is also a useful rule in practice: subsequent 
queries referring to New York state stores can be handled more efficiently using the new rule than 
the original domain theory rule.   A rule of the form "stores in the same state pay sales tax at 

The term generalized caching is used informally in [35] as a synonym for explanation-based learning. Here, by 
analogy with subgoal caching, we use the term in a more restricted sense to mean only those situations where the 
acquired macro-operator is a more general version of the original query expression. 
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state(Gucci,NY) 

Figure 4.2: Determining the sales tax rate at Cartier in New York 

rate(Gucci,7%) 

rate(Gucci,7%) 
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the same rate" is called a determination: a higher-order regularity that by itself is useless in 
reasoning, but which together with some premises leads to useful conclusions [28]. One can think 
of a determination as expressing information about similarities between situations in a certain class. 
Determinations allow the characteristics of a single situation to be extrapolated with confidence.4 

Traditional EBL algorithms are incapable of acquiring any interesting new macro-operator 
from a proof involving a determination. If applied to the example proof above, a traditional EBL 
algorithm yields a macro-operator identical to the original domain theory determination. 

4.5 Two Additional Explanation Transformation Operators 

Given the inadequacies of traditional EBL algorithms just described, we would like to extend 
the framework of Section 4.2 so that new, more powerful, EBL algorithms (in particular, ones 
capable of learning from determinations, and ones capable of performing generalized caching under 
appropriate conditions) can be constructed. 

The following two operators complete the EBL* family of proof-transformation operators. 

Definition 10 : Operator 4 (Match Edge Grafting). Given a leaf subgoal node ns and a consequent 
node nc whose formulae unify, graft the proof rooted at nc at the leaf subgoal ns: 

Opi(ns, nc) : if m(ns) = 0 A f(ns) o /(nc) then m(ns) ^= nc. 

Definition 11 : Operator 5 (Rule Edge Pruning). Given a subgoal node ns and a substitution 6, 
delete the subtree rooted at ns while applying the bindings 6 to the label of the parent node p(ns): 

Op5(ns,6) : r(p(ns)) <= r(p(ns)) - {ns} and l(p(ns)) <= l(p(ns))9. 

Operator 4 can be used (in concert with Operator 3) to emulate the IMEX algorithm [7], which 
"unravels" sections of a proof corresponding to previously acquired macro-operators by suturing in 
the proof from which the macro-operator was originally derived. Operator 5 enables pruning at rule 
edges: in particular, when given an appropriate 8, it is this operator that permits us to construct 
EBL algorithms that can learn the desired macro-operator for the determination example of the 
previous section. 

4.6 A Domain-Independent EBL* Algorithm 

As the proof of the completeness theorem suggests, the EBL* operators define the space of all 
alternative partial explanations. Recall that the general idea behind EBL is to transform the proof 
in some fashion, producing a maximally general — yet still valid — partial proof from which a new 
macro-operator is extracted. EBL algorithms differ in the control heuristics they use to guide the 
transformation process. 

The operationally heuristics used in traditional EBL algorithms (e.g., the trim procedure of 
Section 4.2) are examples of domain-independent control heuristics. While it may be the case that 

4 Determinations have been previously used in EBL work in a quite different way, in order to extend incomplete 
domain theories. The simplest case of the incomplete domain theory problem occurs when a query is known to be 
true, yet no proof of the query can be found. When the domain theory gives rise to a single failed proof involving 
a determination, the PROLEARN-ED algorithm [67] uses the determination to suggest a plausible assumption that 
permits the proof to go through. After asserting this assumption, PROLEARN-ED uses a traditional EBL algorithm 
to chunk the patched proof. In the special case where the original domain theory is assigned the Clark completion 
semantics [25], the PROLEARN-ED algorithm is deductively sound. Otherwise, the algorithm is doing a form of 
abduction, jumping to unsound but plausible conclusions guided by determinations present in the domain theory. 
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domain-dependent control heuristics are required in order to produce the best possible speedup, 
here we propose five general heuristics that can be used in constructing domain-independent EBL* 
algorithms. In particular, these heuristics not only acquire the desired macro-operator in the 
example of Section 4.4, but also automatically perform generalized caching where appropriate. 

The first heuristic, also suggested in [73], recognizes that chains of reasoning based on single 
antecedent rules often express taxonomic isa relationships, which should not be compiled into 
the result of learning lest it become over-specific. Intuitively, the idea is to make the "highest" 
consequent node in a chain look like a domain theory fact. 

Definition 12 : Heuristic 1 (Trim single-antecedent chains). If a leaf subgoal node ns is an 
only child, then apply Operator 5 to prune the subtree rooted at ns while preserving the binding 
constraints implicit therein: 

Hl(ns) : if \r(p(ns))\ = 1 A ro(n,)) = 0 then 0p5(ns,l(ns) o f(lift(ns))). 

The lifting step applied to ns before its removal ensures that only those binding constraints 
contributed by the pruned subtree are retained, as opposed to all of the bindings of variables 

contained in l(ns). 
We may have to apply Heuristic 1 several times to nibble away all single-antecedent structures 

from the proof. Also note that, since subsequent heuristics may apply Operator 5 (producing 
consequent nodes with one child that originally had more than one child), it is important to apply 
Heuristic 1 first so that it is not fooled into identifying such reduced portions of the proof as single 
antecedent chains. This also ensures that we retain the binding constraints implicit in the pruned 
subtree, since Heuristic 1 is applied before any significant changes are made to that subtree (e.g., 
before anything like procedure trim is applied). Heuristic 1 is easily implemented as a simple 
recursive-descent algorithm that eats away at the leaves of the proof. 

function trim-single-antecedent-chains(n : node) : boolean; 
begin 

if subgoal-node?(n) then 
if trim-single-antecedent-chains(m(n)) then 

begin 
lift(n); 
Op5(n,l(n)of(n)); 
return t; 

end 
else return /; 

elseif consequent-node?(n) then 
if r(n) = {s} A trim-single-antecedent-chains(s)) then return t; 
else 

begin 
for s G r(n) do trim-single-antecedent-chains(s); 
return /; 

end 
end 

The second heuristic governs another application of Operator 5. The insight is that certain 
subgoals provide background information that should be compiled into the learned macro-operator; 
essentially a form of partial evaluation [112]. 
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Definition 13 : Heuristic 2 (Trim alien subgoals). If the label l(ns) of a subgoal node contains 
only variables not present in the label l(p(ns)) of its parent, then the subtree rooted at ns should 
be deleted using Operator 5, while preserving the binding constraints implicit therein. 

H2(ns) : if variables(l(p(ns))) n variables(l(ns)) = 0 then 0p5(ns,l(ns) o f(lift(ns))). 

The function variables(x) returns the set of variables mentioned in its argument x. 
As we shall see later, Heuristic 2 is useful in obtaining the desired generalization for the de- 

termination example. Like Heuristic 1, since we are interested in retaining the binding constraints 
implicit in the pruned subtree, it is important that Heuristic 2 also be applied before anything 
resembling procedure trim. Heuristic 2 is also easily implemented. 

procedure trim-alien-subgoals(n : node); 
begin 

if consequent-node?(n) then for s £ r(n) do trim-alien-subgoals(s); 
elseif subgoal-node1(n) A variables(l(p(ns))) D variables(l(ns)) = 0 then 

begin 
lift(n); 
Op5(n,l(n)of(n)); 

end 
else trim-alien-subgoals(m(n)); 

end 

The third heuristic is a refinement of the traditional EBL operationality heuristic that only 
removes consequent nodes corresponding to domain theory facts if those nodes actively serve to 
impose binding constraints on the proof. 

Definition 14 : Heuristic 3 (Trim axioms selectively). If a consequent node nc is a leaf node 
whose label and formula are equally specific (i.e., identical subject to variable renaming), apply 
Operator 3 to prune the subtree rooted at nc: 

H3(nc) : if r(nc) = 0 A f(nc) = l(nc) then Op3(p(nc)). 

Heuristic 3 is more selective than the operationality heuristic of Section 4.2 and plays a crit- 
ical role in obtaining generalized caching behavior in the LT domain. Its implementation is a 
straightforward modification of procedure "trim". 

procedure trim-axioms-selectively(n : node); 
begin 

if consequent-node?(n) then for s £ r(n) do trim-axioms-selectively(s); 
elseif subgoal-node?(n) A r(m(n)) = 0 A f(nc) = l(nc) then OpZ(n); 
else trim-axioms-selectively(m(n)); 

end 

The fourth heuristic is deceptively simple to state but, unfortunately, quite expensive to imple- 
ment. 

Definition 15 : Heuristic 4 (Trim universally true subproofs). If a single answer substitution 9 
subsumes all other possible answer substitutions for the formula of a subgoal node f(ns), then the 
subtree rooted at ns should be deleted using Operator 5 to preserve 9: 

H4(ns) : if 39 G A(/(n5))Va £ A(/(n.))/(n,)ff C f(ns)9 then Oph(ns, 9). 
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Heuristic 4 recognizes that if something can be shown true in the general sense at macro- 
operator construction time, there is no need to require any verification of the fact at macro-operator 
application time; simply remove the subgoal in question. It is the problem of recognizing that 
something is true in the general sense that is so expensive: Heuristic 4 as stated relies on non- 
resource-bounded proof enumeration to find a substitution that subsumes all other substitutions. 
We present no implementation of Heuristic 4, however, later we shall see two examples of efficient 
approximations of Heuristic 4 that can be used to construct practical generalization algorithms. 

The last heuristic is perhaps the simplest of all. It recognizes that in some domains there is 
a certain amount of redundancy in the construction of a proof, such as might occur with frame 
axioms in situation calculus formulations of planning problems [44]. 

Definition 16 : Heuristic 5 (Trim redundant subgoals). If two subgoal nodes in a proof have 
identical formulae (note variable renaming substitutions are not allowed), then one of the subgoal 
nodes should be deleted along with its subtree: 

H5(nsi,ns2) : if/(nsi) = f(ns2) thenOp5(ns2,$). 

Heuristic 5 avoids extracting new macro-operators with redundant antecedents: antecedents 
that would cause later proofs using the macro-operator to perform the same work more than once. 
It should only be applied at the end of the proof transformation process, right before the new 
macro-operator is extracted. 

procedure trim-redundant-subgoals(n : node, a : set of atoms); 
begin 

if consequent-node?(n) then for 5 £ r(n) do trim-redundant-subgoals(s, c); 
elseif subgoal-node?(n) A f(n) 6 a then Op5(ra,0); 
else trim-redundant-subgoals(m(n), a U {/(ft)}); 

end 

To see how these heuristics might be used, let us return to the tax rate example of Section 4.4. 
Recall the original proof (Figure 4.2) is simply an instantiation of the following domain theory rule: 

rate(ly, 1r) <— state(1x, ?u) A state(ly, lu) A rate(1x,1r). 

Applying Heuristic 2, we note that none of the variables of the left-most subgoal (i.e., 1x and lu) 
appear in the rule consequent. This subgoal is pruned using Operator 5 and the bindings 1x/Gucci 
and lu/NY are retained. We next apply Heuristic 3 to remove the two remaining consequent leaf 
nodes (Operator 3), and use "liff (Operators 1 and 2) to obtain a maximally general, valid, proof 
tree. Given that this particular proof is the product of only one rule, the valid proof tree reflects 
exactly the structure of the original rule, less the pruned subgoal. 

The new macro-operator that can be extracted from this partial proof tree is: 

rate(ly, IT) <— state(7y, NY) A rate(Gucci, 1r). 

While this rule is more useful than the original rule due to the reduction in number of subgoals 
and variables that must be bound, we can still do better. The rightmost subgoal rate(Gucci, ?r) 
has an answer substitution {?r/7%} that subsumes all other answer substitutions for that subgoal 
within this domain theory. By Heuristic 4, it can thus be removed via application of Operator 5 
while "compiling in" the substitution {?r/7%}: 

rate(ly, 7%) «- stately, NY) 
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which is the desired macro-operator. 
While the heuristics just described do produce the desired determination, we note that the ap- 

plication of Heuristic 4 in the general case entails enumerating all possible proofs for an expression. 
Fortunately, two special cases of Heuristic 4 can be implemented efficiently and, when combined, 
provide much of the power of Heuristic 4. 

The first special case of Heuristic 4 recognizes that the null substitution 0 subsumes any other 
substitution. If we can prove a skolemized version of the formula of the node (within some reasonable 
resource bound), then the formula is universally true, i.e., 0 is a valid answer substitution for the 
original formula. 

Definition 17 : Heuristic 4a (Trim universal subproofs). If f(ns) is universally true, then delete 
the subtree rooted at subgoal ns: 

HAa(ns) : if 0 6 AR(skolemize(f(ns))) thenOp5(ns,0). 

The function skolemize(x) returns a copy of its argument x with each variable replaced by a 
fresh constant. 

Unlike the general statement of Heuristic 4, Heuristic 4a employs resource-bounded search 
and does not rely on proof enumeration. A reasonable resource bound might be determined by 
inspecting the resources required to construct the original proof. For example, a resource bound 
based on the depth of the proof tree rooted at ns might reasonably be used to limit the depth of 
search for a universally true equivalent. 

procedure trim-universal-subproofs(n : node); 
begin 

if consequent-node?(n) then for s G r(n) do trim-universal-subproofs(s); 
elseif subgoal-nodef(n) A prove(skolemize(f(n)),l + depth(n)) = 0 then Op5(n,0); 
else trim-universal-subproofs(m(n)); 

end 

Heuristic 4a can be used to automatically recognize situations where generalized caching is 
appropriate, as in the LT domain. An EBL* strategy that includes this approximation of Heuristic 
4, in addition to functioning as a normal EBL algorithm, is able to reduce any valid LT proof 
tree to its maximally general root node; thus recognizing and automatically performing generalized 
caching as a special case. 

The second special case recognizes that if there is only one substitution 9 that makes f(ns) 
true, then that substitution subsumes all other substitutions. 

Definition 18 : Heuristic 4b (Trim singleton subproofs). If f(ns) has only one true substitution, 
then delete the subtree rooted at subgoal ns: 

H4b(ns) : if nfl(/(n,)) = fa, fail) A AR(f(ns)) = (0) thenOpb(ns,0). 

As with Heuristic 4a, a reasonable resource bound might again be determined by examining the 
original proof structure. 

procedure trim-singleton-subproofs(n : node); 
begin 

if consequent-node?(n) then for s £ r(n) do trim-singleton-subproofs(s); 
elseif subgoal-node?(n) A prove(f(n), 1 + depth(n)) = 9 A continueQ = fail then 0p5(n, 9); 
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else trim-singleton-subproofs(m(n)); 
end 

It is this second heuristic, which performs a very limited form of resource-bounded proof enu- 
meration, that can be used to prune the rate(Gucci, ?r) subgoal in the tax example. Note, however, 
that in practice we must temporarily remove the recursive rule for rate and perform a resource- 
limited search only for alternative base cases in order to recognize the proof's singleton nature 
[105]. 

Given the domain-independent heuristics just described, we are now ready to construct a 
domain-independent EBL* algorithm. Our algorithm, denoted EBL*DI, is easily expressed as 
a composition of the heuristics introduced previously. 

function ebl*di(p : proof) : rule; 
begin 

trim-single-antecedent-chains( rooi(p)); 
trim-alien-subgoals( root(p)); 
trim-axioms-selectively(root(p)); 
lift(root(p)); 
while trim-universal-subproofs(root(p)) do lift(root(p)); 
while trim-singleton-subproofs(root(p)) do lift(root(p)); 
trim-redundant-subgoals(root(p), 0); 
return chunk(p); 

end 

Note that some heuristics are applied only once, while others are applied repeatedly as long as 
they continue to alter the proof. In addition, each heuristic that either violates the validity of the 
proof or leaves it overly constrained is followed by an application of "lift" to restore the validity 
and generality of the resulting partial proof. 

As with a traditional EBL algorithm, the validity of learned knowledge is dependent on the 
validity of the original domain theory. Traditional EBL formulations expect the domain theory to 
be both correct and stable. Retracting rules or facts from the original domain theory after learning 
may compromise the validity of any learned rules. Similarly, some EBL* transformation strategies 
that rely on Heuristic 4 are implicitly dependent on a form of the closed-world assumption [85]. For 
example, Heuristic 4b is a form of negation as failure [64]; subsequent addition of a new fact to the 
domain theory may change the usefulness of the learned rule. 

The EBL*DI algorithm is truly a domain-independent learning algorithm in the sense that it 
is useful over a broad range of domains. Unlike traditional EBL, EBL*DI is not only capable of 
handling the. determination in the tax rate example, but also reduces to performing generalized 
caching in domains where appropriate, such as the LT domain. Perhaps more interesting, however, 
is the fact that EBL*DI is free to mix generalized caching on one portion of a proof with the use of 
a determination in another (or even the same) portion of the proof as appropriate. In Section 4.7, 
we support the superior performance of EBL*DI in an empirical comparison with traditional EBL 
across several domains. 

In practice, we expect that improved EBL* transformation strategies for learning macro-operators 
may well be domain dependent.   Taking specific knowledge of a particular domain into account 
should lead to better, more useful, generalizations.   For example, in the tax rate generalization 
above, "knowing" that a store can have only one tax rate (i.e., that rate defines a function from 
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its first argument to its second) would support a very efficient, domain-specific, implementation of 
Heuristic 4. This kind of information is often easily included in the original domain theory specifi- 
cation: here, for example, as the first-order sentence V?a;, ?«, 1v rate("!x, ?u)Arate(1x, tv) -»?« =1v. 
Alternatively, if a nonmonotonic semantics such as the standard minimal model semantics is 
adopted for facts and rules, then functionality assertions are logically entailed, and they can be 
proven using special inference rules [38]. 

4.7    Evaluating EBL*DI 

In this section, we present an empirical comparison of our EBL*DI algorithm with the traditional 
EBL algorithm of Section 4.2. The central question we want to resolve is whether macro-operators 
produced our EBL*DI algorithm reliably outperform macro-operators acquired by a traditional 
EBL algorithm across a spectrum of application domains. We are interested in measuring the 
change in performance on subsequent problems after learning. 

Unlike our evaluation of bounded-overhead caching in Section 3, we used an even simpler exper- 
imental method for this comparison. Each experiment reported here used a different domain theory 
and problem set. The general idea is to partition the problem set, originally of size N, into two 
mutually exclusive subsets, a training set of size k and a test set containing the remaining N - k 
problems. Two otherwise identical depth-first unit-increment iterative-deepening theorem provers 
were allowed to learn from each problem in the training set using different learning algorithms, and 
then are tested on the test set.5 We recorded CPU time required and number of nodes explored for 
each problem in the test set. We then compared these numbers to those obtained with an identical, 
non-learning, theorem prover on the same test set. As is normal practice, we assumed that the cost 
of learning is negligible in the sense that it can be amortized over many subsequent problems. 

4.7.1    Experiment 7 

In our first EBL experiment, we compared the performance of our EBL*DI algorithm and the 
traditional EBL algorithm in the same blocks microworld used in the caching experiments of the 
previous section. 

The blocks-world domain theory is highly recursive and the problem-solving search space is 
highly redundant. A typical new rule serves only to increase the branching factor of the search 
space and is of negative utility. In fact, training on a single problem yields useful rules (i.e., produces 
some overall speedup on the remaining 25 problems) only 8 of 26 times with traditional EBL. The 
EBL*DI algorithm is superior, in that it produces net speedup for 5 additional problems, for a total 
of 13 of 26 cases. We used only those 8 problems from which even traditional EBL could extract 
rules of positive utility to investigate the extent to which the utility of multiple acquired rules is 
cumulative. For this experiment, our hypotheses are that (?) EBL*DI learns macro-operators that 
give greater speedup than those learned by traditional EBL, and (ii) the greater the number of 
problems from which EBL*DI can learn, the greater the speedup. 

The results of experiments testing these hypotheses are illustrated in Figures 4.3 and 4.4. The 
EBL*DI system is significantly faster on average than the EBL system for all tested training sets 
and training set sizes. Furthermore, learning from more problems makes both systems run faster. 

sAs noted previously, unit increment may well produce the worst-case performance for iterative deepening. 
6It is technically possible for a node exploration ratio under one to correspond to a CPU time ratio over one, since 

the overhead of using an additional rule may increase the average node exploration cost [109]. 
This "expensive chunk problem" does not appear to be an issue in this experiment, as the general shapes of the 

curves in Figures 4.3 and 4.4 are quite similar.  More precisely, we observed that average node exploration cost is 
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Figure 4.4: Average node exploration ratios for selected training sets with k < 8. 
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These results are quite impressive: by learning from appropriate problems, the EBL*DI system 
can solve the remaining test problems can be solved in as little as 32% of the time while searching 
as few as 33% of the nodes searched by an otherwise equivalent non-learning system. However there 
are two important caveats. The first is that the results are specific to this particular microworld 
and problem distribution. We hope that similar results hold in other domains, but no experimental 
evaluation can prove this. 

More important, this experiment finesses the problem of what to learn. Learning from random 
examples is fundamentally more difficult than learning from well-chosen examples supplied by a 
teacher [111]. The training sets used in the experiment here consist entirely of problems from 
which traditional EBL can learn useful macro-operators. Training sets consisting of randomly 
chosen problems typically do not give speedup in this domain. 

4.7.2    Experiment 8 

In this next experiment, we revisited the classic LT experiment [77], using an updated version of the 
original LT domain theory. Queries in the LT domain are statements in the propositional calculus, 
that is, fully ground expressions, such as thm(or(not(or(not(P), not(P))), not(P))). We rewrote 
the 92 propositional calculus problems from Chapter 2 of Principia Mathematica, replacing implies 
with or and not: 87 unique problems remain after rewriting. Unlike the blocks microworld prob- 
lems of the first experiment, the LT problems were originally ordered by the authors of Principia 
Mathematica to maximize their pedagogical utility. 

The domain theory consists of three rules and five facts, which correspond to the first.five 
theorems from Chapter 2 of Principia Mathematica. Domain theory facts are generalized propo- 
sitional statements such as axm^r^no^orCla^a)),^)) that rely on universally quantified vari- 
ables to allow for constant renaming in the query expressions. In this fashion, both the queries 
thm(or(not(or(P, P)), P)) and thm(or(not(or(Q,Q)),Q)) will eventually match the same domain 
theory fact. The three domain theory rules are 

thm(1x)    <—     axm(1x) 
thm(1x)    <—     aa;m(or(nof(??/),?a;)) A thm{1y) 

thm{or(not(1x),!z))    <-     axm^r^not^x),^)) A thm(or(notC!y), 1z)). 

Since each of these rules has at most one recursive thm subgoal, they give rise to the same kind of 
linear proof structure produced by the original LT system (see Figure 4.5). 

The hypotheses tested in this experiment are that (?) learning from early problems helps in 
solving later problems, and (ii) EBL*DI outperforms both traditional EBL and rote learning. The 
experiment consists of four trials. The first trial is a simple non-learning trial: all 87 problems are 
attempted, and statistics describing whether or not each problem is solved as well as solution char- 
acteristics are recorded. The remaining three trials are learning trials, where a learning algorithm 
(rote learning, traditional EBL, or EBL*DI) is applied to each solved problem with a proof larger 
than one node; the results of learning are then available for use on subsequent problems. 

The protocol just described differs significantly from that used in our first experiment, where 
separate training and test sets were used. The protocol used here better suits the sequential nature 

almost independent of training set size for both learning algorithms. For the traditional EBL system, a very small 
but statistically significant positive correlation between training set size and average node exploration cost node was 
observed. However, for the EBL*DI system, we observed a very small but statistically significant negative correlation. 
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axm(or(not(or(not(P), P)), or(P, not(P)))) 

axm(or(not(?yl), ?xl)) 

axm(or(not(or(not(P), P)), or(P, not(P)))) 

axm(or(not(or(?a, ?b)), or(?b, ?a))) 
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thm(or(not(P), P)) 

thm(?yl) 
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Figure 4.5: Proof of thm(or(P, not(P))). 
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No Learning    Rote    EBL    EBL*DI 
Problems Solved 

CPU Time Ratio 
Node Exploration Ratio 

34              38        30           44 
1              0.72    16.62       0.13 
1              0.76     3.13        0.17 

Table 4.1: Summary Results for LT Domain. 

of the LT problem set, and is in the spirit of the original LT experiments.7 Unfortunately, this 
protocol presents some interesting statistical problems when one tries to apply the experimental 
analysis methods used for the other experiments. For this reason, we restrict ourselves to qualitative 
comparisons of the different systems.8 

Summary statistics for the four trials are shown in Table 4.1. Each trial was performed under an 
identical resource bound of 50,000 node explorations per problem. Any problem left unsolved by the 
non-learning system that was subsequently solved by one of the learning systems was reattempted 
using the non-learning system with an extended resource bound in order to compute CPU time 
and node exploration ratios. Such problems are, of course, not included in the results reported for 
the non-learning system. 

The results are generally in line with those reported in [78]: 

1. The non-learning system solved 34 of the 87 problems within the resource bound. Its CPU 
time ratio and node exploration ratios are, by definition, 1. 

2. The rote learning system solved 4 additional problems for a total of 38 problems solved. On 
average, the rote learning system searched fewer nodes (76% of those searched by the non- 
learning system) and required less time (72% of the CPU time required by the non-learning 
system). 

3. The traditional EBL system failed to solve 5 problems that were solved by the non-learning 
system within the resource bound. In return, it was able to solve 1 additional problem 
not solved by either the non-learning or rote-learning systems. On average, however, the 
traditional EBL system searched a far greater number of nodes (over 300% of those searched 
by the non-learning system) and was also much slower than the non-learning system (CPU 
time ratio of over 1600%) for those problems that it did manage to solve. 

4. The EBL*DI system solved every problem solved by any other tested system. It solved 10 
problems more than the non-learning system, 6 problems more than the rote learning system 
and 14 more than the traditional EBL system. It searched far fewer nodes (17% of those 
searched by the non-learning system) and was also faster (CPU time ratio of about 13%) 
than any other system. 

The protocol also differs from the original LT protocol of [77], which allowed rote learning (j'.e., caching) of 
unsuccessful problems as new domain theory elements. In general, learning from unproven propositions may augment 
a domain theory with untrue facts, and it makes the performance contribution of a particular learning algorithm 
difficult to isolate. Therefore our protocol follows that of [78]. 

These interesting statistical problems are the topic of [43], where the data from this experiment is evaluated 
using a more sophisticated nonparametric statistical test specifically designed for censored data. While the statistical 
foundations of [43] are well beyond the scope of this report, we should note here that the qualitative observations 
reported for this experiment are in fact in agreement with the more rigorous conclusions discussed in [43]. 
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These results support our experimental hypotheses. In particular, we see that the traditional 
EBL algorithm often acquires macro-operators of negative utility. The branching factor of the 
search explodes as the acquired macro-operators are added to the domain theory. Two factors 
account for this explosion: the generality of the macro-operator consequents and the number of 
macro-operator antecedents. The macro-operators acquired by rote learning are nothing more than 
cached axioms, with very specific consequents and no antecedents. Their specificity guarantees their 
low overhead, but also makes them less useful.9 In contrast, since the EBL*DI macro-operators 
are more general than those acquired by rote learning, they are more widely useful. At the same 
time, their consequents are not general enough to cause the branching factor explosion observed 
with traditional EBL. 

The principal result is that the EBL*DI algorithm automatically performs generalized caching 
in the LT domain: it is a general-purpose EBL algorithm, and not a special-purpose generalized 
caching algorithm. In fact, it is precisely the same algorithm used in both the previous experiment 
and the next experiment. 

4.7.3    Experiment 9 

In this third EBL experiment, we tested one of the original intuitions motivating EBL, that is, that 
problem solvers are typically posed a series of problems selected according to some skewed yet a 
priori unknown distribution. The desired effect of learning is then to "tune" the problem solver 
to this particular query distribution, improving its overall expected performance as a consequence. 
In this experiment, we used a synthetic domain theory to test the performance of traditional EBL 
and EBL*DI on two different problem distributions, where one of the distributions is uniform and 
one is weighted to a subspace of problems. Our hypotheses are that (i) both EBL algorithms 
perform better on the skewed distribution, and (n) the EBL*DI algorithm performs better than 
the traditional EBL algorithm. 

In order to have control over the query distribution, we used an artificial theory. The synthetic 
domain theory used in our experiment consists of 330 rules and 38 facts. It was generated in a 
restricted first-order language without function symbols: thus, while the theory may entail an 
infinite number of valid proofs, there are only a finite number of atomic formulae within the 
deductive closure. Restricting the language in this fashion allows us to efficiently compute the 
deductive closure in a forward-chaining fashion. For the theory used here, there are 976 unique 
maximally general atomic formulae within the deductive closure. 

We generated two 135-element problem sets from this 976-element deductive closure. The first 
set was generated from a seed set sampled from the deductive closure according to a uniform proba- 
bility distribution, while the second set was generated from a seed set drawn according to a skewed 
probability distribution. Queries are either identical to the seed formula, more specific instances of 
the seed formula (if it contains universally quantified variables), or copies of the seed formula with 
new existentially quantified variables replacing randomly selected seed formula constants. Thus 
while the queries so generated are guaranteed to have corresponding instances within the domain 
theory, finding proofs of these queries may involve substantial search (a number of the queries 
generated do not yield a solution within 2 • 107 node explorations by the non-learning system). 
The first quasi-uniformly distributed set contains 113 unique queries, while the second set contains 
96 unique queries (queries are duplicated due either to repeated seeds or to the introduction of 
existentially quantified variables in the seed). 

9One of the techniques proposed in [72] was, in fact, to prohibit chaining on the antecedents of acquired macro- 
operators in order to reduce the branching factor explosion. 
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Figure 4.6: Average percentage of unsolved test problems for nested training sets with k < 85. 

We randomly partitioned each 135-element problem set into an 85-element training set and a 
50-element test set. Ten such random partitions were generated. For each partition, we performed 
nine trials for each learning system. The first trial involved learning from 5 randomly selected 
problems from the training set and testing on all 50 test problems. Each subsequent trial involved 
training on 10 additional randomly selected training problems. We performed all trials with a 
200,000 node exploration resource limit, and we compared the results to the performance of a 
non-learning system operating on identical test sets. 

Figure 4.6 plots the average percentage of unsolved test problems and makes clear the effect of 
the utility problem. The non-learning system is able to solve every test problem within the 200,000 
node exploration resource limit, while both learning systems lose the ability to solve a certain 
percentage of the test problems within the same resource bound. The ability of the EBL*DI 
system's intrinsically more useful macro-operators to mitigate the adverse effects of the utility 
problem are especially clear in the quasi-uniform distribution case, where the effects of the utility 
problem are more pronounced. For the skewed distribution case, the difference is much less striking, 
especially for smaller training sets. Both learning systems suffer less in the skewed distribution case, 
where the training problems are by construction more likely to reflect the composition of the test 
problem set. 

Of course, the adverse effects shown in Figure 4.6 should be balanced against any performance 
improvement provided by the macro-operators on the remaining test problems. Figure 4.7 plots 
average CPU time ratio for solved problems. As for Figure 4.5, we again see our hypotheses are 
supported. First, it is clear that, regardless of learning algorithm employed, the skewed prob- 
lem distribution case initially yields more CPU time reduction than the quasi-uniform problem 
distribution case. This is due to the greater "predictive power" of the training set with respect 
to the test set in the skewed distribution case; as the training set size increases, this advantage 
disappears. Second, we see that the EBL*DI learning system provides greater speedup than the 
traditional EBL algorithm for both problem distributions. Even where the difference is not large, 
since the EBL*DI system leaves significantly fewer unsolved problems than the traditional EBL 
system (Figure 4.6), this supports our hypothesis that EBL*DI macro-operators are intrinsically 
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Figure 4.7: CPU time ratios for nested training sets with k < 85. 

more useful than macro-operators produced by a traditional EBL algorithm. Similar conclusions 
are supported when one examines the node exploration ratios (Figure 4.8). In summary: 

1. Independent of the distribution tested, the EBL*DI system solves more problems faster and 
with fewer nodes explored than does the traditional EBL system within the same resource 
limit. 

2. The performance of both learning algorithms is better on the skewed problem distribution 
than on the quasi-uniform problem distribution. As expected, the proper selection of training 
problems has an enormous impact on the overall usefulness of explanation-based learning, 
regardless of the actual learning algorithm applied. 

It should be mentioned that there is one source of experimental bias present in the results 
just reported. As should be clear from Figure 4.6, due to the large size of the problems in both 
problem sets, both systems often did not solve all of the test problems within the resource bounds 
imposed. For this reason, the results shown in Figures 4.7 and 4.8 are optimistic estimates of the 
real values: increasing the resource limits so that more problems are solved would most probably 
increase average CPU time ratios as well as average node exploration ratios. The bias is more 
pronounced in the quasi-uniform distribution case, where a larger number of problems were left 
unsolved. Thus, as shown in [94], it is theoretically possible for the apparent advantage of the 
EBL*DI system over the EBL system to erode or even to vanish entirely as the resource limit is 
increased. This eventuality is rather unlikely, however, as over all trials and for both distributions 
the problems solved by EBL*DI and unsolved by traditional EBL outnumber the problems solved 
by traditional EBL and unsolved by EBL*DI by a margin of greater than 10 to 1. 

4.8     Summary of EBL*DI 

The EBL*DI algorithm is superior to traditional EBL algorithms in at least three ways. First, it 
is able to acquire useful macro-operators in situations where traditional algorithms cannot, such as 
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Figure 4.8: Node exploration ratios for nested training sets with k < 85. 

in the determination example of Section 4.4. Second, it produces macro-operators of significantly 
greater utility than those produced by traditional EB-L algorithms, a claim supported empirically 
by the experimental results of Section 4.7. Finally, the generality of EBL*DI's control heuristics 
— which are declaratively specified — allow the same algorithm to be used effectively across a 
broad spectrum of application domains, including the LT domain for which a special-purpose EBL 
algorithm was previously proposed. 
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Chapter 5 

Nagging and the DALI Inference 
Engine 

This chapter introduces a parallel search-pruning technique called nagging. Nagging is 
sufficiently general to be effective in a number of domains; here we focus on an imple- 
mentation for first-order theorem proving, a domain both responsive to a very simple 
nagging model and amenable to many refinements of this model. Nagging's intrinsic 
fault tolerance and exceptional scalability make it particularly suitable for application in 
commonly available, low-bandwidth, high-latency distributed environments. We present 
several nagging models of increasing sophistication, demonstrate their effectiveness em- 
pirically, and compare nagging with related work in parallel search.1 

5.1    Introduction 

Combinatorial search is among the most rudimentary strategies for problem solving. Unfortunately, 
while search is the only known approach for many interesting problems, it is fundamentally incon- 
sistent with efficient computation. This in no way diminishes the importance of these problems. It 
just means that we can't expect to solve them without some trial and error. 

In its most naive form, combinatorial search involves generating and then testing each candidate 
solution. Of course, if suitable problem-specific knowledge is available, one can do considerably 
better than blindly trying all possibilities. Exploiting such knowledge can prune away whole regions 
from the space of candidate solutions, dramatically reducing solution time. Thus while we may 
not be able to solve search problems in polynomial time, improvements in search technology can 
significantly increase the size of the largest problem solvable within a limited amount of time. 
This is the goal of our research; we are interested in applying various types of problem-specific 
information to improve the resource-bounded performance of a search-based problem solver. 

Unfortunately, exploiting a particular aspect of problem-specific structure may not reduce search 
uniformly across all problem instances. This is further confounded by the fact that structural 
properties common among problems of interest are not always well understood. Thus, a search 
mechanism that is effective in one case may be substantially less effective on other, seemingly very 
similar problem instances. 

An example will help to illustrate this point. Consider a variant of the classic JV-queens problem 
which we call the M:iV-queens problem.2 As usual, a solution represents a placement of N queens 

1This chapter is adapted from [102]. 
2Although TV-queens is not a particularly good example of a search problem, we use it because of its simplicity 
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Figure 5.1: Performance comparison of two closely related search procedures on 100 randomly 
generated instances of the 60:80-queens problem. While the average performance of these systems 
should be identical, their comparative proficiency on individual problem instances varies greatly. 

on a N x N chess board such that no queen is threatened. Unlike the standard JV-queens problem, 
however, some number M < N of queens are placed on the board in advance in an initial, threat-free 
configuration. 

We now compare the effectiveness of two slightly different search procedures on a collection of 
60:80-queens problems. One procedure searches for a solution by trying to place a queen on each 
unoccupied row of the board, from top to bottom. The other fills the board one column at a time 
from left to right. Both procedures reject partial solutions in which a queen is already threatened. 
Figure 5.1 plots the search time for the column-by-column system against the row-by-row system on 
100 problems. Each point represents the solution of a randomly-generated 60:80-queens problem. 
Each system was required to complete the solution, or to report failure if no solution was possible. 

On standard iV-queens problems, these systems would be equally proficient, and all datapoints 
in Figure 5.1 would lie close to the diagonal. On M: TV-queens problems, however, the two systems 
exhibit radically varying performance from one problem to the next. This is representative of the 
behavior of many search procedures in general; it is difficult to know beforehand how effective 
a given approach will be on a given problem instance. Two techniques that offer comparable 
performance on one problem may differ dramatically on another problem instance. 

Nagging is a parallel search-pruning technique specifically designed to exploit this problem-to- 
problem variation in search behavior. Conventional approaches to reducing search (e.g., subgoal 
caching) pay a polynomial amount of overhead for the chance to avoid exponentially-sized portions 
of the search; essentially, they try to trade inefficient computation for efficient whenever possible. 
Nagging attempts to avoid exploring parts of the search space by examining them in parallel under 
an alternative formulation or search procedure. Although still exponential, these alternative search 
problems may be dramatically smaller than the original, so a parallel nagging process may come 
up with an answer much more quickly than the standard search. Such an approach would be quite 
effective on the problems in Figure 5.1, where solution times differ by more than a factor of two on 

and likely familiarity to the reader. 
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74 of the 100 problem instances. 
In Section 5.2 we describe a general framework for nagging. In Section 5.3, we instantiate this 

framework as part of the Distributed Adaptive Logical Inference (DALI) search engine, a first-order 
theorem prover based on model elimination. Next, we describe several technical refinements to both 
nagging and the internals of DALI designed to enhance performance in a large class of domains. In 
Section 5.6, we present an empirical evaluation of DALI and the performance advantage of nagging 
on problems drawn from Version 1.1.1 of the Thousands of Problems for Theorem Provers (TPTP) 
problem set. Finally, we compare nagging to related work in parallel search and theorem proving 
and outline the direction of our continuing research. 

5.2    Nagging 

We begin by introducing some relevant notation. In general, T will be used to denote the search 
tree and 6 to represent the individual nodes that comprise T. For node 6, c(S) represents the set of 
children of 6. With some overloading of the symbol T, T(S) is used to denote the subtree rooted 
at S. 

Nagging depends on a problem transformation function, /, mapping search trees to alternative 
search trees: 

DEFINITION (Problem Transformation Function). / is a problem transformation function if for 
every search tree T, f(T) is another search tree such that f(T) contains solutions whenever T does. 
The class of all such functions is denoted by T. 

Intuitively, functions in T exchange a search problem in one domain for a "simpler" problem in 
some new domain. We say the transformed problem is simpler because it must have a solution 
whenever the original does. 

The most useful consequence of this definition is that knowledge about f(T) can sometimes 
obviate the need to explore T itself. In particular, if /(T) is known to contain no solutions, then 
T cannot contain a solution. When the cost of exploring f(T) is small compared to T, it may be 
beneficial to use f{T) as an indicator of whether or not searching T would be productive. 

Nagging is designed to take maximal advantage of this property. Two types of processes are 
used. A master process explores the search tree T under some serial search discipline. One or more 
nagging processes operate asynchronously and in parallel to the master. Each nagging process 
monitors the operation of the master and periodically selects some node 6 G T such that the 
master has started but not yet finished exploring T(6). The nagger applies a transformation /6f 
to T(6) and attempts to solve the resulting transformed search problem. If the nagger exhaustively 
explores f(T(6)) without finding a solution, the definition of T guarantees that the master's search 
of T(6) is futile and can be abandoned without risk of missing a solution. If, however, the nagging 
process finds a solution in f(6), no search pruning is warranted by the definition of T, but the 
nagger is free to work on a new transformed subproblem.3 

Figure 5.2 gives a simple example of how nagging might reduce the master's search on JV-queens 
problems.4 Assume that the master process is attempting to solve the JV-queens problem by filling 
the board one row at a time.  In the figure, the master has closed all avenues to solution after 

3 Later, we'll see how some classes of transformations more specific than T permit a nagger's solution can be used 
to advantage under certain conditions. 

4This particular example does not illustrate all the aspects of transformation tolerated by nagging. Here the 
nagger's search tree always contains the same number of solutions as the master's. Later we introduce transformations 
that do not have this property. 
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Figure 5.2: Search pruning via nagging. Here, the nagging process transforms the master's search 
problem by rotating the chess board 90 degrees. Under the same row-by-row search procedure the 
nagger's search space is much smaller and will be exhausted much more quickly than the master's. 

placing only three queens; although no queens are threatened, every space in the leftmost column 
is. If a nagger transforms the problem via a 90-degree board rotation, its attention is immediately 
focused on the threatened column. While the master may explore many futile search paths before 
reconsidering the placement of one of the first three queens, the nagger can be expected to exhaust 
its transformed search space very quickly. The hope is that the master will explore only a small 
portion of its own space before the nagger prunes it. 

5.2.1    Basic Protocol 

In its most elementary form, the nagging protocol is defined by the following three message types: 

idle When a nagging process becomes idle, it reports to the master with an idle message. After 
sending this message, the nagger waits to be assigned a new search problem. 

problem The problem message is the means by which the master distributes work to available 
nagging processes. The master is licensed to send problem messages to any nagger at any 
time, but, in practice, they are sent only after one of the following conditions is met: 

• The master receives an idle message from a nagger. 

• The master completes its search of T(6) while the nagger is still exploring some f(T(S)). 

The problem message specifies a node 6 £ T such that the master has expanded S but 
not finished exploring T(S). After sending a problem message, the master continues its 
search. When the nagger receives the message, it discards any search in progress, selects a 
transformation / £ T and begins exploring f(T(S)). 

prune Whenever a nagging process exhausts its transformed search problem without finding a 
solution, it issues a prune message to its master. When the master receives a prune message 
for subtree T(S), it knows that further search in T(S) would be futile and simply discards any 
unexpanded nodes in the subtree. 

Each type of message also carries a unique time-stamp to prevent the receiver from misinterpreting 
the state of the sending process. 
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5.2.2    Properties of the Nagging Protocol 

Although the nagging protocol is quite simple, it enjoys properties (stated in the theorems below) 
that make it attractive as both a general-purpose search pruning technique and a parallelism 
scheme. These properties contribute to two design goals: similarity to the underlying serial search 
procedure and suitability for a distributed computing environment. 

One advantage of the nagging protocol is that it does not directly affect the master s sena 
search order   This can be convenient if the master's search is heuristically guided or if the serial 
search order conveys some measure of optimally (e.g., shortest solutions first). It also bounds the 
performance of the parallel system with respect to its serial counterpart. 

DEFINITION (Myopic Search Procedure). Let F be the set of nodes on the search fringe (the 
nodes generated but not yet expanded) and let 6 be a member of F. A search procedure is said to 

be myopic if the following conditions are met for all F and 6: 

• The set of children generated when 6 is expanded is a function of 6 only. 

. If S is selected from F as the next node for expansion and F'C F with 6 G F', then S must 
also be selected from F as the next node for expansion. 

The myopic property excludes a number of techniques by which information gained in one part 
of T can be used to prune or reorder search elsewhere.  These techniques include various search 
pruning mechanisms like intelligent backtracking [9, 58] as well as some search-reordering policies 
[51. Some learning schemes (e.g., caching and lemmaizing [89]) also compromise myopia 

When myopia is maintained, nagging exerts a well-defined influence on the search order: 

THEOREM 1 (Solution Ordering) If the master's search procedure is myopic, a nagged search 

will discover all solutions that are found by an equivalent serial search, and solutions will be found 

in the same order.5 

Theorem 1 does not guarantee that nagged and serial searches discover the same solutions because, 
in special cases, nagging will find solutions where the serial search will not. Obviously this can 
only occur when the serial search is incomplete. For example, nagging can extricate a depth-first 
search from an infinite subtree as long as transformation makes this subtree finite. Because of this 
possibility, the potential search reduction achievable through nagging is theoretically unbounded. 
More generally, nagging will not cause the master to explore more of T than it otherwise would: 

THEOREM 2 (Non-Increasing Search) If the master's search procedure is myopic, then, for 
any solution 8S, if 6. is the ith node expanded without nagging then Ss will be found before the master 

expands i + 1 nodes in a nagged search. 

Of course, this result has only indirect bearing on performance, since nagging overhead changes 
the average cost of node expansion. There is some risk that nagging-induced overhead will actually 
increase solution time even when the search space is reduced. As with serial search-reduction 
mechanisms, the hope is that the savings will outweigh the overhead. 

For this reason, the nagging protocol has been designed to minimize overhead, with demand on 
the master process being given special attention. Under the basic protocol, communication occurs 
infrequently, about as often as naggers need new subproblems. Additionally, the content of each 

5Proofs of all theorems given here can be found in [103]. 
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message may be kept reasonably small. The idle and prune messages require only a time-stamp 
and an indication of the relevant nagging process. The problem message must encode an entire 
subtree, but, with a little communication in advance, this message also may be concisely represented 
[4,26,87]. 

Nagging is also designed to inconvenience idle processes rather than busy ones whenever possible. 
For example, the problem transformation is always computed by an idle nagging process. Likewise, 
if a nagger is idle, it may have to wait for a new problem from the master, but the master is 
never required to wait for messages from its naggers. From the master's point of view, nagging is 
completely asynchronous. This property fosters a form of fault tolerance which makes nagging well 
suited to a distributed computing environment: 

THEOREM 3 (Fault Tolerance) Theorems 1 and 2 apply even if messages under the nagging 
protocol are delayed or lost. 

Theorem 3 implies that nagging can even tolerate quiet failure of a nagging process. In fact, if T 
is finite, then a nagging process will eventually be reintegrated even if its connection to the master 
is temporarily broken. Interruptions in communication may cause the master process to explore 
more of T than it would with reliable communication, but it will never fail, overlook solutions or 
generate invalid ones. 

5.3    Nagging in First-Order Inference 

Although the iV-queens examples given so far have been useful for expository purposes, solutions 
to this problem are of limited practical value. The richer language of first-order logic makes a 
much more compelling target for nagging. Since a large number of interesting problems, including 
TV-queens, have obvious first-order encodings, effective nagging in this domain can benefit many 
applications. 

Nagging has been implemented as part of the Distributed, Adaptive Logical Inference (DALI) 
theorem prover. DALI is a search engine for first-order logic based on the model-elimination proof 
calculus [66]. It was designed as a framework for combining a variety of search reduction techniques, 
and it features a number of serial performance enhancements in addition to its parallel component. 

5.3.1    Proof Calculus 

We assume that the reader is familiar with the essentials of first-order logic and theorem proving 
[10, 22]. Model elimination is a first-order inference procedure that, although not properly a reso- 
lution procedure, is closely related to resolution and its variants [65]. Model elimination has been 
popular among theorem proving systems because its component operations can be implemented 
very efficiently [100]. Here, we focus on the characterization of model elimination within the con- 
nection tableau framework [63]. The connection tableau makes explicit much of the structure of 
model elimination proof objects and simplifies the discussion of problem transformations needed 
for nagging. 

A connection tableau A = (r, fi) consists of a finite tree r along with a labeling function fi 
defined on the nodes of r. The function ß associates a literal with each node of r except the 
root. This labeling must satisfy two conditions. For each non-root node n G r, either c{n) = 0 or 
{/i(n') | n' G c(n)} is an instance of a clause from the theory. Also, for any non-root, non-leaf n G r 
there must be some n' G c(n) such that /i(n') is the negation of fi(n)- 
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DEFINITION. A tableau branch ß is the sequence of nodes on some simple path from the root of 
the tableau to a leaf. The member of ß farthest from the root is indicated by u>(ß). 

DEFINITION. A branch is considered closed if it contains nodes na and nb such that /j,(na) and 
/i(nb) are logical complements. A tableau is closed when all of its branches are closed. A branch 
or tableau that is not closed is considered open. 

Model elimination uses two inference operations, extension and reduction. Let A = (T,/J) be a 
tableau containing an open branch ß. 

DEFINITION (Reduction). If there exists a node n£ ß such that n(n) and -./i(w(/?)) have a most 
general unifier, 9, then reduction of ß by n entails applying 0 to every label in A. 

When it is applicable, reduction effectively closes branch ß. Extension creates new, potentially 

open, branches. 

DEFINITION (Extension). If {h,..., h] = C is a clause in the theory and fi(u(ß)) and -ylm have 
a most general unifier, 0, then extension of ß by lm G C results in a new tableau (r',//). The tree 
T' is identical to r except for the addition of nodes nx,.. .nk as children of u{ß). The new labeling 
function // is defined by p'(n) = fi(n) 6 for all n G r and /z(n,-) = h 6 for i = 1,.. .k. 

The empty tableau consists of a single, unlabeled root node. According to the definition above, 
the empty tableau may be extended by a literal of any clause in the theory. A model elimination 
proof for theory S is a sequence of inference operations that yields a closed tableau when applied to 
the empty tableau. Theorem proving in model elimination involves a search for such a proof. Thus, 
the tableaux are the nodes of the model elimination search tree and the symbol A will henceforth 
be used instead of 6 to denote nodes of T.6 We say that a sequence of operations is a subproof for 
branch ß in tableau A if the sequence closes ß when applied to A. A sequence of operations is said 
to bind a variable X occurring in A if the substitutions applied by the sequence replace X with a 
non-variable term or cause X to codesignate with another variable that is distinct in A. 

5.3.2    Search Engine 

Like many other theorem provers built around model elimination, DALI's basic inference mechanism 
is modeled after the Warren Abstract Machine (WAM) [1,113]. This efficient search mechanism was 
developed within the Prolog community to support efficient execution of definite-clause programs. 
Fortunately, since model elimination is operationally very similar to Prolog, it necessitates relatively 
few modifications to the WAM [100]. 

The WAM traverses the search space by incrementally modifying a single representation of 
the tableau. This results in a low node-expansion cost and makes depth-first the most natural 
search order. Since the infinite search trees common in first-order logic are problematic for simple 
depth-first search, DALI uses iterative deepening [57]. This entails some duplication of work at 
each iteration but, in most cases, does not seriously handicap performance [101]. By default, DALI 
bounds search at each iteration by bounding the height of derived tableaux. 

DALI offers some flexibility in its ordering of search within each iteration. Ordinarily it uses 
Prolog's policy of always choosing the leftmost open branch as the target for extension or reduction. 
When operating on a branch, reduction is tried first, with reduction by nearer ancestors given 

6This can be a bit confusing since the tableaux composing the search tree are, themselves, trees of labeled nodes. 
To help to reduce this confusion, we adhere closely to our chosen notation: T represents the search tree, A = (r, /i) 
stands for the nodes in T, and T(A) denotes a subtree of T. 
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precedence. If no solution is found via reduction, extensions of the selected branch are considered. 
Extensions by unit clauses are tried before non-unit clauses, but, otherwise, clauses are simply 
ordered according to their appearance in the theory. 

5.3.3    Nagging Component 

Critical to the success of nagging is the design of effective problem transformation functions. In the 
simple example of Figure 5.2, the "rotation" transformation converts one instance of M :iV-queens 
into a different instance of the same problem, permitting master and nagger to use the same search 
procedure. Not only does this significantly simplify the implementation, but it also ensures that 
any improvements made to the serial search procedure will automatically benefit both master and 
nagging processes. 

In a similar manner, we would like DALI's transformations to trade one theorem-proving prob- 
lem for a different theorem-proving problem that presents a different solution profile under an 
identical search procedure. Of course, membership in T means that f(T) must contain a proof 
whenever T does. Unlike the JV-queens example, however, the model elimination proof calculus 
provides a very rich framework for designing problem transformations. 

In practice, membership in T is sufficient to guarantee correctness but is not sufficient to insure 
performance improvement. Designing effective transformation functions with a realistic potential 
for search reduction is a nontrivial task. Consider the two sample model elimination transformation 
functions, fx and f2. Function /i works by modifying the tableau, while f2 works by modifying 
the theory, S. 

/i(T) = T(A') where A' is the result of deleting the leaf nodes of every open branch in the tableau 
at the root of T. 

f2(T) = T" where T" is a model elimination search tree with the same root as T, but defined by 
theory S' = S U C for some new clause C". 

Both of these functions are legal members of T, but neither will contribute to pruning the master's 
search in practice. Pruning occurs only when a nagger exhausts its search space without finding a 
solution. A nagger using f\ would always find a solution (a closed tableau), while the extra clause 
introduced by f2 can only increase the nagger's search space when there is no solution to be found. 

These functions serve to illustrate two additional properties that are crucial to the design of 
effective problem transformation functions: 

DEFINITION (Informative). A function / G T is informative if there is a search tree T such that 
/(T) contains no solutions. 

DEFINITION (Reductive).   A function / G T is reductive if there is a search tree T such that 

1/COI < \T\. 
Function f\ is not informative; function f2, while informative, is not reductive. 

While the informative property is a necessary condition for successful nagging, the reductive 
property is not. If, for example, the master's search procedure is not depth-first, a nagger may be 
able to exhaust /(T(A)) before its master completes T(A) even if /(T(A)) is larger. Alternatively, 
the nagger may simply be running on a faster or less loaded machine. In this paper, however, the 
reductive property will be taken as a practical requirement for any candidate transformation. 
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/ 

Figure 5.3: Example of transformation under V. Closed branches are indicated by shading. Not 
only has the left-to-right ordering of the tableau been perturbed, but two of the open branches 
have been discarded. 

Nagging in DALI has focused on two classes of transformations. Functions in the permutation 
class work by reordering and discarding tableau branches. Functions in the abstraction class map 
distinct symbols of the original domain to indistinguishable first-order terms. 

DEFINITION (Permutation Transformation). Function /is a. permutation transformation if f(T( A)) 
T(A') where A' is identical to A except for the possible deletion of the leaves of some open branches 
and permutation of the left-to-right ordering of children at each node. The set of all such functions 
/ is denoted as V. 

Figure 5.3 illustrates the effect of a typical transformation in V. Reordering children is simply a 
means of altering the order in which the search attempts to close open branches. Deleting a leaf 
node permits closing of the tableau without a subproof for the truncated'branch. 

Membership in V does not insure that a function is informative or reductive. Indeed, both f\ 
and the identity transformation satisfy the definition of V. In general, however, functions in V 
exploit two opportunities for reducing the size of the transformed search space. The most obvious 
is the deletion of tableau branches. Tableaux that are distinct in the original search space may 
have a single, abbreviated representative in the transformed search. Reordering the remaining 
tableau branches also contributes to search reduction. The order in which branches are selected 
may have substantial influence on the size of the search space (as evident in the ./V-queens example 
of Figure 5.1) without affecting completeness. In general, determining an optimal conjunctive 
ordering is, itself, a search problem. Naggers using functions in V operate under the assumption 
that the master's default ordering is suboptimal. A nagger's permutation of the tableau can be 
seen as an attempt to find a better ordering. 

The definition of the abstraction class is a bit more involved. Let =a be an equivalence relation 
on the constant and function symbols appearing in the theory, S. Each equivalence class in =a 

comprises a set of symbols that may be rendered indistinguishable after transformation. DALI uses 
a simple syntactic device to enforce this mapping. 

DEFINITION (Abstraction Mapping). Given S and =a, the abstraction mapping ga associates with 
each first-order formula a set of abstracted formulae. Given formula F, ga(F) is the set containing 
all formulae derivable from F via the following: 

• Each occurrence of constant symbol c in F is replaced by either f[c]{c) or /[C](V) where /[c] is 
a new symbol representing the equivalence class containing c, and V is a new variable. 
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Figure 5.4: Example of transformation under A. Here, the constants b and c are identified, as are 
the functions / and h. This results in a simplified theory where four of the original clauses collapse 
to two. 

• Each occurrence of function symbol h of the form h(t\,.. .tn) is replaced by either f[h](h,ti,.. .tn) 
or f[h](V,ti,.. .tn) where /^ is a new symbol representing the equivalence class containing h 
and V is a new variable. 

DEFINITION (Trivial Abstraction). Given abstraction mapping ga, the trivial abstraction of for- 
mula F, written gn(F), is the member of ga(F) that introduces no new variables. 

The set of abstracted formulae generated by ga represents a choice of where abstraction might be 
applied. Intuitively, abstraction discards some information in the original formula. For formula 
F, selecting among the members of ga(F) controls where and how much information is lost. If 
constant b is replaced by a term like f[b](V), it will match the abstraction of any other constant 
c for which [b] = [c]. If b is replaced by /[&](&), it will only match /[6](^) or other occurrences of 

f[b](b). 

DEFINITION (Abstraction Transformation). Let ga be an abstraction mapping. Function / is 
an abstraction transformation if /(T((r,/x))) = T" where, T" is the model elimination search tree 
defined by some modified theory S' G ga(S) and rooted at tableau {r,fi'). The labeling function 
\i' is defined as yu'(n) = gä(lJ.(n)) for all n £ T. The set of all such transformation functions / is 
denoted by A. 

Figure 5.4 demonstrates the effect of a transformation in A. Here, constants b and c are 
identified. As a result, the last two clauses are rendered logically equivalent, and one of them can 
be discarded without changing the deductive closure of the theory. Similarly, association of function 
symbols / and h makes two other clauses identical. In general, clause C may be removed from the 
abstracted theory as long as some other clause C is retained such that C is as general as C: 

DEFINITION (Clause Generality). Clause C" is as general as clause C if there exists a substitution 
0 and an isomorphism gc from C onto C" such that for / G C, / = <7c(0 0. 
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This generality relation on clauses is stronger than conventional subsumption [10]. Subsumption 
would be sufficient if the nagger was only required to find a proof starting from the empty tableau; 
however, /(T(A)) is rooted at a transformed version of the master's tableau. To ensure that 
/(T(A)) contains solutions whenever T(A) does, it is not always permissible to remove all clauses 
that are logically subsumed. 

Like V, membership in A does not guarantee that a transformation is reductive, since, for 
example, the definition of A does not exclude the trivial abstraction. Thus, the abstracted search 
space may be isomorphic to the original. In general, however, abstraction has power to reduce 
search by eliminating clauses from the abstracted theory. In Figure 5.4, both the original and 
transformed theories entail no proofs, but the size of the abstracted search space is only linear in 
its depth while the original is exponential. 

The classes V and A prescribe functions of fairly general applicability. Both do, however, rely 
on some assumptions about the first-order formulation of a problem. The functions in V transform 
the search space by interchanging and deleting branches of the tableau. This approach would be 
of limited value for theories where every clause contains at most two literals. Likewise, nagging 
with A would be ineffective for theories having only a small number of distinct symbols. Thus, the 
applicability of nagging is a function of both the problem and its chosen formulation. The hope 
is that most natural problem formulations will lend themselves to nagging under V, A or some 
combination of the two. 

5.4    Refinements to Nagging 

The basic nagging protocol is attractive because of its simplicity and its consistency with a dis- 
tributed model of parallel computation. This framework also admits many natural refinements and 
extensions that support greater utilization of nagging processes and additional opportunities for 
search pruning. These refinements fall into two broad categories: completely general refinements 
applicable to nagging in any search problem and with any transformation function, and refinements 
specific to nagging in model elimination. 

5.4.1    Recursive Nagging 

One limitation of the basic nagging protocol is that all nagging processes must communicate directly 
with the single master process. By design, each nagger imposes only a small amount of overhead on 
the master, but this centralized approach is inherently inconsistent with an interest in scalability. 

Recursive nagging is a strategy for reducing this bottleneck while increasing the effectiveness 
of individual nagging processes. In attempting to prune the master's search, each nagger must 
complete its own search problem in a similar or identical domain. This presents an obvious oppor- 
tunity for naggers to be nagged in turn. If nagging is effective at reducing search on the master, 
it may be similarly effective at pruning naggers' search problems. Figure 5.5 shows how recursive 
nagging may utilize a large number of processes without requiring a single administrator to directly 
control them all. The top-level process acts as the master for a small number of naggers; each non- 
terminal nagger also serves as the master for its subordinates. These subordinate naggers advance 
the master's search only indirectly, by speeding the operation of their parent naggers. 

All of the transformation functions introduced thus far map between instances of the same 
problem. This permits uniform operation throughout a nagging hierarchy. While a first-level 
nagger searches some tree of the form /(T(A)), its second-level naggers explore trees of the form 
/'(T(A')) for A' G /(T(A)). For each problem assigned to the top-level master, a nagger at the 
first level may undertake several transformed subproblems; for each problem given to a first-level 
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Figure 5.5: Recursive nagging model. 

nagger, its second-level naggers can expect to see several subproblems. This nonuniform granularity 
yields a nonuniform demand for interprocess communication, which can be structured according to 
the layout of the communication facility. Processes demanding more frequent communication can 
be placed locally in the distributed computing architecture. 

5.4.2 Informed Selection of Nagging Targets 

The discussion of nagged subproblems thus far has concentrated on the action of the transformation, 
with little attention given to choosing an appropriate target subtree. A policy for selecting this 
subtree is much akin to an OR-ordering heuristic. A perfect mechanism for selecting nagging 
targets must reject all subtrees that contain solutions. Thus, any reasonable rule for selecting 
feasible nagging targets must be approximate in nature. 

In many cases it is possible to use knowledge about the theory or the transformation to make 
informed choices about where nagging would be most useful. For example, when a node has 
only one child, it is generally preferable to nag on the subtree rooted at that child rather than 
its parent. Both nodes offer similar potential for search pruning, but, as a rule, the child yields a 
smaller transformed search space. Enforcing this preference can be particularly effective on theories 
with logic programming qualities, where OR choice points occur infrequently arid are embedded in 
liberal stretches of supporting computation. DALI uses a combination of compile-time and run-time 
techniques to avoid nagging on a node that has only one child. 

5.4.3 Completed Subproofs 

Apart from the use of problem transformation functions specific to its operation, there are oppor- 
tunities to exploit features of the model elimination proof calculus within the nagging protocol. 
Under both V and A-, master and nagger perform search in closely related domains. For / £ VliA, 
search in /(T(A)) may reveal more information about T(A) than is guaranteed under the definition 
of JT. 

Under the basic protocol, naggers reduce the master's search only when they fail to solve their 
transformed search problems. If a nagger finds a solution, it simply discards it and reports idle. 
In the general case, there is no simple relationship between solutions to the master's problem and 
the nagger's transformed problem. For functions in V, however, there are opportunities to exploit 
solutions found in the transformed space. In Figure 5.6, for example, transformation discards all 
but the rightmost branch. If the nagger discovers a solution, it has found a subproof for r(c), one of 
the open branches in the master's tableau. If the master were permitted to use this partial solution, 
it would not have to re-derive a subproof for r(c). 
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Figure 5.6: The nagger's discovery of a subproof for r(c) may permit the master to avoid proving 
it a second time. 

In general, some restraint must be exercised in grafting a nagger's subproof into the master's 
tableau. While the nagger searches in /(T(A)), the master continues its attempt to close A. By 
the time the nagger completes a subproof, the master will have already applied some inference 
operations to A. The nagger's subproofs will be applicable to A, but may not be consistent with 
the master's current node in T(A). Even when consistent, adopting such a subproof is tantamount 
to permuting the master's conjunctive goal ordering. 

Notwithstanding these difficulties, there are situations where naggers produce unquestionably 
useful subproofs. For example, the nagger's subproof of r(c) in Figure 5.6 can be applied to the 
master's tableau without risk of adversely affecting the master's search. This is because the branch 
it closes shares no variables with the rest of the tableau; it cannot interfere with operations on 
other branches. DALI uses the following condition to identify subproofs that can be safely used by 
the master: 

DEFINITION (Weak Locality). Let B be the set of open branches in tableau A and let B C B. A 
partial proof, p, is a weakly local subproof for B in A if the following are satisfied: 

• Subproof p closes all branches in B when applied to A. 

• For any branch ß e (B - B), when p is applied to A, no children are added to ß. 

• The labeling of any ß G (B - B) is changed only by a renaming of variables when p is applied 
to A. 

DALI's notion of locality is "weak" because it permits subproofs to bind variables occurring else- 
where in the tableau so long as they do not affect other open branches. One advantage of this class 
of subproofs is that the master does not have to encourage or even detect weak locality. The nagger 
may simply check its own solutions a posteriori to see if they are weakly local before reporting idle. 
If a nagger reports that it has found a qualifying subproof, the master can rely on the nagger's 
partial solution and concentrate on closing the remaining branches. It can be shown that addition 
of a weakly local subproof has no influence on the closing of other branches. Consequently, the 
master may defer its integration indefinitely without risk of changing search behavior. When a 
nagger finds a weakly local subproof, it simply reports the pertinent branches and holds a copy of 
the solution. The actual subproof is transmitted only if the master succeeds in closing all remaining 
branches. In this way, the cost of exploiting a nagger-discovered subproof is kept low until it is 
clear that the subproof is useful. 

Exploiting nagger-discovered solutions in this way requires three new messages in the nagging 
protocol: 
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subproof-found When the nagger finds a solution in its /(T(A)), it checks the weak locality 
conditions. If they are satisfied, the nagger records a copy of its subproof and sends a 
subproof-found message to the master indicating the set of tableau branches it has suc- 
cessfully closed. The nagger retains a copy of its solution in /(T(A)) as long as the master 
continues searching T(A), in case the master needs to integrate this solution into the final an- 
swer (see the local-subproof message below). Upon receiving a subproof-f ound message, 
the master discards any attempt it has made to close these branches, and considers them 
closed as long as it remains in T(A). 

subproof-request If the master successfully closes all branches not covered by a local subproof, 
it uses subproof-request messages to ask for copies of the missing subproofs from the 
appropriate nagging processes. The master then searches for solutions to these branches 
itself while it waits for its naggers to respond. 

local-subproof When the nagger receives a subproof-request message, it transmits its copy of 
the requested weakly local subproof in a local-subproof message. If parts of the desired 
subproof are held by recursive naggers, they must first be requested and received from these 
processes. As the master receives local-subproof messages it discards any existing, partial 
subproofs for the relevant branches and integrates the new ones. 

The master's attempt to complete its proof even after issuing a subproof-request is in the 
interests of fault tolerance. Ordinarily the nagger will supply the needed subproof before the master 
can complete its search. However, if communication with the nagger is interrupted, the master will 
eventually discover a solution by itself. 

Permitting the master to exploit subproofs found by its naggers provides new opportunities for 
performance improvement. In Figure 5.6, even if nagging never causes the master to backtrack 
while working on the three leftmost branches, the promise of a subproof for r(c) permits the 
master to completely avoid search on behalf of the rightmost branch. Previously, the master was 
assisted only where backtracking was required. On the other hand, while the exploitation of weakly 
local subproofs may benefit search performance, it compromises the solution ordering property of 
Theorem 1. A nagger's partial solution may be the result of a different conjunctive goal ordering. 
By grafting it into the master's tableau, the master's usual search order is violated. 

5.4.4    Incremental Search Pruning 

Under the basic nagging protocol, pruning occurs only after a nagger finishes its search problem. 
Under J7, this is the point at which the master's and nagger's search spaces are guaranteed to be 
related. For transformation / G V, there is a much tighter relationship between these spaces and 
there is potential for more aggressive search pruning. 

Consider the tableau and its transformation given in Figure 5.7. When a nagger explores 
/(T(A)), it begins by trying to close its leftmost open branch. The nagger finds the first applicable 
inference operation, op1, performs it, and then goes on to the next open branch. If attempts to 
close the remaining branches fail, the nagger may be forced to backtrack, reject opx, and consider 
other inference operations for its first branch. Information about this rejection of op1 can be useful 
to the master process. The master begins its search of T(A) by attempting to close its own leftmost 
open branch. If successful, it moves on to the second branch, the nagger's leftmost. Like the nagger, 
the master will first try op1. The nagger's determination that opx can't participate in closing the 
three rightmost branches implies that it won't lead to a proof of the master's four. In fact, this 
knowledge may even be of value to sibling and subordinate naggers. 
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Figure 5.7: Potential for cooperative search pruning. The same inference operations may be appli- 
cable to branches in both the master's and nagger's tableaux. Failure of one process to close the 
tableau using a particular inference operation may have implications for that operation's potential 

to close the tableau on another process. 

An inference operation is considered infeasible for tableau A if applying the operation to A 
cannot lead to a solution. If operation op is known to be infeasible for A, any partial proofs in 
T(A) that contain op can be discarded. To facilitate exchange of this finer-grained information 
about infeasible avenues of proof, the nagging protocol is supplemented with one new type of 

message: 

inf easible-choice The inf easible-choice message includes a tableau A and a set of inference 
operations {opl5... opk} that are infeasible for A. 

Sharing this type of intermediate search information can reduce both master's and nagger's 
searches in ways not possible under the standard protocol. It does, however, represent a change 
in the granularity at which nagging takes place. Previously, processes communicated only when 
a nagger's subproblem was complete. With incremental search pruning, processes may send and 
receive a number of inf easible-choice messages while working on a single subproblem. This 
additional overhead is somewhat mitigated by the fact that processes never have to wait for these 
messages. They are simply processed when and if they arrive. 

5.5    Refinements to the Search Procedure 

DALI's basic model-elimination search has been extended in several respects. These extensions 
help to reduce search and increase DALI's effectiveness on typical problems. Improvements to 
the basic search engine also contribute to parallel performance by speeding the nagging processes 
as well as the master. In principle, these changes to the serial search procedure are orthogonal to 
nagging. However, certain modifications of the search procedure will jeopardize some of the proper- 
ties enjoyed by nagging and its refinements. To retain completeness, some mutual accommodation 
between nagging and serial search-reduction schemes is necessary. On the other hand, there are 
opportunities for synergy between nagging and the serial search-reduction mechanisms. Exploiting 
this potential can permit DALI's serial and parallel components to each work more effectively. 

5.5.1    Structural Refinements 

Although model elimination is refutation complete, there are many restricted forms of the calculus 
that can improve search performance without jeopardizing completeness. These restrictions forbid 
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the construction of tableaux that exhibit certain structural properties. Tableaux that exhibit these 
properties represent redundant lines of reasoning; they may lead to a proof, but there will always 
be a shorter path to proof elsewhere in T. 

A number of structural refinements are applicable to model elimination [100]. Fortunately, many 
of these are, at least in part, provided as a side effect of DALI's intelligent backtracking mechanism. 
The only structural refinement that DALI deliberately enforces is the identical-ancestor refinement: 
Any tableau containing a branch with two identically labeled nodes can be discarded. 

Checking each derived tableau against this condition would entail significant overhead. To 
maintain a high inference rate, DALI's uses a lazy approximation of this constraint that has similar 
search-reducing power. If ß is the selected branch from tableau A, then T(A) is skipped if the 
label on u>(ß) is identical to the label of some other node in ß. This weaker condition pertains only 
to the selected branch at each tableau, and can be checked quickly as each node is expanded. 

Since master and nagger use the same search procedure, any structural refinements applied to 
DALI affect the operation of both. It can be shown that, for both V and A, the identical-ancestry 
refinement may cause the nagger to overlook solutions, but whenever T(A) contains a solution that 
is permitted under the refinement, /(T(A)) will also contain one that is permitted.7 By itself, this 
structural refinement simply rejects suboptimal tableaux in a uniform manner. As a result, myopia 
is preserved and the nagging properties of Section 5.2 are maintained. 

5.5.2    Intelligent Backtracking 

The basic WAM is built around a chronological backtracking mechanism. When a failure point is 
reached, the search returns to the most recent choice point with untried alternatives. In contrast, 
DALI uses a form of intelligent backtracking, where recent choice points that have no chance of 
repairing the failure can safely be skipped during backtracking. 

DALI's intelligent backtracking component works by monitoring the variable binding structure 
in the tableau. It is a model-elimination analog of many similar schemes developed for Prolog 
[9, 23, 58]. Each choice point in the search may be either marked or unmarked. Informally, a mark 
on a choice point means that the decision made there might be a reason the proof could not be 
completed. Making that choice differently might change the tableau in a way that permits the 
proof to succeed. Marking is performed whenever the search is forced to backtrack. After the last 
applicable inference operation has been tried for branch ß, a given choice point is marked if the 
inference operation applied there created ß or changed its labeling. Upon backtracking, unmarked 
choice points are simply skipped. 

This model of intelligent backtracking presents complications when combined with nagging. 
In Figure 5.8, for example, a serial search might mark the choice points at A2 and A3 while 
exploring T(A,i). If nagging prunes T(A<i), the master may not have occasion to mark both of 
these. As a result, the master may fail to consider other tableaux derived from A3 and may miss 
some solutions. Fortunately, for functions in V and A there is a convenient means of updating 
these backtracking marks whenever nagging prunes the search. The nagging process must exhaust 
some portion of /(T(A)) as a prerequisite to pruning the master's search. The nagger's marking 
procedure can be extended so that search in /(T(A)) provides a marking for A and its ancestors. 
These marks don't affect the nagger's backtracking, but are maintained as a supplement for the 
master's marking whenever its search space is pruned. Whether pruning through prune messages or 
inf easible-choice messages, these nagger-generated marks are sufficient to retain completeness 
of the master's search. 

This is not true for arbitrary first-order transformations.   For example, there is a less sophisticated notion of 
problem abstraction for which the identical-ancestor refinement compromises completeness. 
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Figure 5.8: Interference of nagging with intelligent backtracking. Nagging-induced search pruning 
may interfere with the choice-point marking mechanism used in the master's intelligent backtracking 
procedure. Unchecked, this interference compromises search completeness. 

Although DALI's intelligent backtracking scheme can help to significantly reduce search, it 
violates the definition of a Myopic Search Procedure. Without myopia, the Solution Ordering 
and Non-Increasing Search properties are no longer guaranteed. Thus, while the master's search 
remains complete, nagging in the presence of intelligent backtracking may actually increase search. 
Fortunately, empirical results suggest that nagging and intelligent backtracking usually cooperate 
quite well. 

5.5.3    Subgoal Caching 

Intelligent backtracking uses a failure in one part of T to avoid search elsewhere. It exploits the 
fact that the same tableau features often turn up in many places in T. Caching exploits the 
same phenomenon. It records features of the current tableau and then looks for these features in 
subsequent search nodes. If an appropriate match is found, the results of the former search may 
be used to avoid repeating the same work elsewhere in T. 

DALI's caching mechanism is based on the bounded-overhead caching scheme described in 
Chapter 3. Using caching and nagging together requires some coordination but has the potential 
for significant speedup (see Section 7.3). 

5.6    Empirical Evaluation 

In this section we present empirical results that illustrate the effectiveness of nagging. We are 
particularly interested in determining, first, whether or not the basic nagging protocol is an effective 
means to perform distributed search, and, second, whether the extensions to nagging outlined in 
Section 5.4 result in improved performance. To this end, we compare the performance of the DALI 
system using a simple nagging protocol against an equivalent serial system. We then repeat the 
comparison using a more sophisticated nagging protocol. 

In order for our results to be meaningful, they should be obtained on as wide a range of problems 
as possible. Our tests employ Version 1.1.1 of the Thousands of Problems for Theorem Provers 
(TPTP) problem set, a collection of 2652 first-order theorem proving problems given in clausal 
normal form [107].   TPTP problems are drawn from a broad range of domains and cover many 
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Figure 5.9: Comparison of a 16-nagger parallel system with an equivalent serial system on 400 
randomly-selected problems. Datapoints falling below the upper line are faster on the parallel sys- 
tem, with the lower line being the threshold for linear performance improvement. The x datapoints 
correspond to the 127 problems solved by both systems, while the • datapoints represent the 9 
problems solved only by the parallel system. The latter are "censored" in the sense that a lower 
bound on serial solution time is used as the ^-coordinate value, in effect causing these points to 
appear some distance to the left of where they should be. 

theories given in the literature. We used a randomly chosen 400-problem subset of the TPTP for 
both experiments. 

Our first goal is to compare the performance of a simple nagging configuration against an equiv- 
alent serial system. Both the serial and nagging systems are configured to use the standard search 
order, intelligent backtracking, the identical-ancestor refinement, and a 200-element subgoal cache 
(i.e., all of the serial search enhancements of Section 5.5). The nagging system consists of a master 
processor assisted by 16 naggers, half using transformations in V and half using transformations 
in A. The master process was run on a Sun Sparc 670MP system with 128MB of real memory 
that was shared by a number of users. Nagging processes were run on equivalent or less powerful 
systems that were similarly shared. Each system was given a maximum of five minutes of elapsed 
real time to solve each of the 400 problems in the test set. 

Summary statistics for this first experiment are as follows. The serial system solved 127 of the 
400 problems within the allotted time. Using the same elapsed time constraint, the nagging system 
was able to solve the same 127 problems as well as 9 additional problems that were not solved by 
the serial system within the allotted time. 

Of course, number of problems solved constitutes only a relatively coarse measure of perfor- 
mance. Figure 5.9 plots the solution times for each individual problem. Each datapoint corresponds 
to one of the 136 problems solved by at least one of the tested systems. Nagging system CPU time 
is plotted (vertical axis) against serial system CPU time (horizontal axis). Datapoints falling below 
the upper diagonal line represent problems solved more quickly by the parallel system, while points 
falling below the lower line represent problems solved more than 17 times faster on 17 processors. 
The 9 "censored" datapoints (appearing as "bullets" rather than "crosses") correspond to those 
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Figure 5.10: Nagging configuration used in second experiment. 

problems solved only by the nagging system. Since these problems were not solved by the serial 
system, we use the CPU resources consumed within the time limit as an optimistic estimate of 
their actual serial solution time. Graphically, this artificially displaces each censored datapoint to 
the left of its true position by some unknown margin. 

What is, perhaps, most surprising here is that some problems exhibit a performance improve- 
ment that exceeds the number of participating processors. Of course, linear speedup is not the 
theoretical limit for performance improvement under nagging; a nagging system is not simply a 
direct parallelization of its serial counterpart. As suggested by Figure 5.1, a transformation may 
give the nagger a substantial short-cut through the search. For this subset of the TPTP, V and 
A must sometimes give the nagger a search space that is more than 17 times smaller than the 
master's. 

A visual inspection of Figure 5.9 reveals that the performance of the nagging system is often 
worse than that of the serial system on the "easier" problems (informally, those problems requiring 
less than 1 CPU second to solve on the serial system). This is not surprising since nagging induces 
some start-up overhead, establishing communication and transmitting the domain theory to all 
naggers on each problem. On most of the "harder" problems this overhead is outweighed by the 
search pruning nagging facilitates. Furthermore, the performance improvement on some individual 
"hard" problems dwarfs the loss in performance on all of the "easy" problems - an effect that is 
visually obscured by the logarithmic scale used for both axes of Figure 5.9.8 

Our second experiment compares a more sophisticated nagging architecture with the same serial 
system using the same 400 randomly selected problems. As in the first experiment, 16 nagging 
processors were used, half taking transformations from V and half from A. In this experiment, 
however, the naggers were hierarchically configured as shown in Figure 5.10. In addition, all 
nagging refinements described in Section 5.4 are enabled. 

Figure 5.11 plots the results of the second experiment. Here, the more sophisticated nagging 
system is able to solve all problems completed by the naive nagging system in the first experiment, 
plus an additional 4 problems not solved by either the serial system or the naive nagging system for 
a total of 13 censored datapoints. When compared to Figure 5.9, the more sophisticated nagging 
system demonstrates not only a greater advantage on the "harder" problems, but also a smaller 
performance penalty on "easier" problems. In addition, a greater number of problems are pulled 
below the upper and the lower diagonal lines. 

8 For example, one censored datapoint shown here displays a speedup of at least 40 times with respect to the serial 
system. The time saved on this problem alone is more than an order of magnitude greater than the sum of the time 
penalty on the 85 problems where the serial system is faster. 

78 



Parallel Solution Time (sec.) 

100 

10 

0.1  r 

0.01 : 

1 1 —i— i 11    ■ ■  ■ i •i     i  i i    i     i 

■ ' \\- 

r /0<x 

/**    X 
■ 

/v   x            S 
&$XX         yS 

3?           /S 
• - 

" X   x 
(\ 

X     - 

— 
xäp* . 

X 
■     X 

xxxx - 

Xi 
X X 

>Jr      i .  . i .    . i . 1 

0.01 0.1 1 10 
Serial Solution Time (sec.) 

100 

Figure 5.11: Comparison of a more sophisticated 16-nagger system and an equivalent serial system 
on the same 400 randomly-selected problems. As before, datapoints falling below the upper line are 
faster on the parallel system, and the lower line demarks linear performance improvement. The x 
datapoints correspond to the 127 problems solved by both systems, and the • datapoints represent 
to the 13 problems solved only by the parallel system. 

5.7    Discussion 

Our work on nagging for model-elimination theorem proving has obvious relevance to other work 
in parallel search and theorem proving. Since logical specifications are flexible with respect to their 
order of evaluation, many opportunities for parallelism have been identified [59]. Most work has 
concentrated on schemes that may be broadly classified as either AND-parallel or OR-parallel. 

OR parallelism captures the natural parallelism in the search tree and has been popular among 
parallel theorem proving implementations [2, 4, 86]. In OR parallelism, the nodes of T are par- 
titioned and each processor is given a subset to explore. It is typical to divide T at its subtree 
boundaries, but other, less obvious, divisions have been used in an effort to maintain a uniform 
distribution of work [26]. 

OR-parallel strategies are attractive primarily because of their potential for low overhead. On 
shared-memory architectures, there are many opportunities to share data among parallel processors, 
and highly efficient implementations have been developed [33]. When communication is more 
expensive {e.g., on a network of workstations), processes can be assigned large portions of the 
search space and are permitted to explore them independently. 

Among OR parallelism schemes, nagging is most closely related to work in competitive OR 
parallelism [39]. In this model, all processes attempt to solve the same problem, each using a 
different sound and complete search strategy. When any one of the processes finds a solution, the 
problem is solved. The hope is that one of these search strategies will lead to a solution quickly. 
This is similar to nagging, where master and nagger also compete to explore a portion of the 
search space. The major difference centers around nagging's use of problem transformation. This 
transformation may give the nagger a substantially reduced search space, but solutions it finds there 
don't necessarily have relevance to the original problem. A second important difference between 
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nagging and OR parallelism in general concerns the order in which multiple solutions are discovered. 
OR-parallel approaches do not usually preserve serial semantics; thus they may generate solutions 
in a different order than would a serial search procedure. In contrast, as shown in Theorem 1, 
nagging need not compromise solution ordering. 

In the logic programming community, much of the work on parallel search has focused on 
AND parallelism. This technique emphasizes the parallelism inherent in closing more than one 
open branch in the tableau. Essentially, the set of open tableau branches is partitioned and each 
processor is charged with closing some of them. If all processes are successful, it may be possible to 
compose the subproofs they find into a single, consistent, proof. For these independently-generated 
subproofs to be composable, they they must agree in how they bind variables. 

There are two common approaches to enforcing this inter-process constraint on variable bind- 
ings. Under one, AND-parallel processes exchange variable binding information as they perform 
search [34]; processes are not permitted to make bindings that might disagree with their peers. 
Other approaches, such as restricted AND parallelism, permit parallelism only when conflicting 
bindings cannot occur [31, 47]. 

AND-parallel strategies are attractive because of their potential for providing speedup in situa- 
tions where OR-parallel strategies cannot. For example, many logic programming domain theories 
are designed to avoid OR choices, so the search tree exhibits little branching for OR parallelism 
to exploit. In addition, AND-parallel strategies do not in general compromise the order in which 
solutions are generated, an important factor in the logic programming community where "single so- 
lution" problems dominate "all solution" problems, and where a theory's procedural interpretation 
is typically more important than its declarative semantics alone. 

Nagging and AND-parallelism exhibit interesting similarities. If one AND-parallel process de- 
termines that its assigned branches in A cannot be closed then it is clear that T(A) cannot contain 
a solution. In this case, it is safe to prune T(A) and free any sibling processes working on other 
branches of A. This is much like nagging under V. The subtree T(A) can be pruned when any 
process identifies a set of branches in A that can't be closed. By composing naggers' weakly local 
subproofs, nagging also exhibits a component of AND parallelism. The difference between these 
two techniques stems from a difference in intent. In trying to reach a consistent solution in T(A), 
AND parallelism must insure that processes agree with respect to variable binding. This type of co- 
ordination may preclude the detection of unsatisfiable subsets of the branches in A. Since nagging 
processes do not have to agree or coordinate their activity, they are free to concentrate on showing 
the unsatisfiability of arbitrary subsets of tableau branches. Thus if solutions are sparse, then 
nagging is likely to make better use of available computational resources than AND parallelism. 
However, since naggers make no effort to guarantee that their choices agree with their neighbor's, 
it is only a product of good fortune when the solutions they find can be composed into a complete 
proof. 

Nagging also bears some similarity to a number of serial search reduction techniques that 
direct search through some notion of problem transformation. Some of these techniques use the 
transformed problem as a template for solving the original, searching in the transformed space first 
and, if possible, coercing solutions found there into solutions of the original [81]. Other approaches 
focus on transformations that are guaranteed to yield efficiently solvable problems [8, 98, 54]. 
The transformed problems are used as computationally inexpensive approximations of the original. 
Typically, the approximation is consulted first and, if it is sufficient to solve the problems, search 
in T can be avoided. 
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5.8     Summary 

This chapter has described nagging, a new parallel search-pruning technique, and its implemen- 
tation in DALI, a distributed, adaptive model-elimination theorem prover. We have presented 
empirical results demonstrating that nagging is effective at reducing search in a variety of first- 
order domains. We have also shown that a number of refinements to the naive nagging model can 
enhance its effectiveness in these same domains. Furthermore, nagging combines neatly with a 
number of serial search reduction mechanisms, permitting us to bring multiple speedup techniques 
to bear in problem solving. 

Nagging, like OR parallelism, requires only brief and infrequent communication, making it 
particularly suitable for high-latency low-bandwidth distributed systems. Under the right circum- 
stances nagging, like AND parallelism, can even help to improve performance in theories where 
OR parallelism is ineffective, and needn't compromise the order in which solutions are generated. 
Another feature that distinguishes nagging from most OR-parallel and AND-parallel schemes is 
its intrinsic fault tolerance. This property has been particularly valuable when nagging in large, 
distributed computing environments, where a requirement for complete reliability is unrealistic [97]. 

The results in first-order inference have been so encouraging that we have begun developing 
nagging implementations in other domains such as alpha-beta minimax, the Traveling Salesman 
problem, and learning of Bayesian inference networks. Our continuing work on nagging includes 
instantiation of the basic protocol in these and other domains as well as further refinement to the 
first-order model. 
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Chapter 6 

Iterative Strengthening and Anytime 
Optimization 

In order to perform adequately in real-world situations, a planning system must be able 
to find the "best" solution while still supporting anytime behavior. We have developed 
a method for incrementally optimizing plans called iterative strengthening that can be 
used in many situations where other optimization methods are not appropriate.1 In 
particular, iterative strengthening supports optimized planning within an "anytime" en- 
vironment using multiple simultaneous optimizing parameters, and it can be adapted to 
support inadmissible heuristics and undecidable domains. 

6.1    Introduction 

In order to perform adequately in real-world situations, a planning system must do more than 
simply generate a plan that satisfies the user's goals. In many domains there are almost always 
multiple solutions to any given problem statement, and the user typically will want the best solution 
(although the criteria for "best" may change from one user to another or one problem to another). 
Additionally, many domains are time-critical and require support for "anytime" behavior [29]. In 
this context, an anytime algorithm is one in which a solution is incrementally refined over time; if 
the algorithm is run to completion it will find an optimal solution, but the user can interrupt it at 
any point and demand a useful (but not necessarily optimal) solution. 

We have developed an algorithm called iterative strengthening, a flexible method of producing 
optimized plans where the user's criteria for optimization may change during the planning session. 
Iterative strengthening has the following properties: 

• the underlying knowledge base is independent of any specific optimizing parameters; 

• the method supports multiple simultaneous optimizing parameters; 

• users can easily switch between sets of optimizing criteria; 

• the method supports optimized planning within an "anytime" environment; 

• the method is consistent with Prolog-style inference engines. 

1This chapter was adapted from work presented in [12, 13, 14]. 
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We have implemented this method within the ALPS system 2 and have tested it in a simplified 
transportation planning domain with optimality criteria such as total transport time, number of 
aircraft, and probability of success. 

The remainder of this chapter is organized as follows. Section 6.2 presents the iterative strength- 
ening algorithm itself. Section 6.3 describes how the algorithm supports flexible changes to optimal- 
ity criteria. Section 6.4 discusses the interaction between optimal planning and theorem proving. 
Sections 6.5 and 6.6 describe how iterative strengthening can be used in situations where the opti- 
mality criteria are inadmissible or the domain theory is undecidable. Finally, Section 6.7 summarizes 
the way that different domain properties impact the efficiency of iterative strengthening. 

6.2    The Concept of Iterative Strengthening 

Iterative strengthening is an algorithm that can be used to search for an optimized solution in 
situations where there may be no control over the order of node expansion and in situations where 
the user may demand an answer before the optimal solution has been found. 

Iterative strengthening is related to the concept of iterative deepening [57], in which the system 
searches to a given depth in the search tree for a solution, and if none is found, the system restarts 
the search from the beginning with a larger depth cutoff. Iterative deepening combines the small 
memory requirements of depth-first search with the guaranteed termination property of breadth- 
first search. Two other common variations on iterative deepening are iterative broadening [42], 
which forces backtracking when depth-first search exceeds the allowed number of alternative paths 
at a node, and iterative weakening [83], which is a more general procedure for iterating through 
alternative search strategies. 

The iterative strengthening algorithm first performs an unconstrained search for any satisficing 
solution to the planning problem. When it finds that solution, it restarts the search, but now 
constrains the solution to be "better" than the first solution by some "increment", where "better" 
is measured by an optimization function specified by the user and "increment" is a function applied 
to the optimization parameters of the current plan. For example, if the goal is to find the plan 
that takes the minimum time to execute, and if the system has already found a plan that takes 
n minutes, it will restart the search constraining the new plan to n - 8, where 8 is a user-defined 
constant. The system continues strengthening the optimization parameters until no more solutions 
can be found; the last solution is the optimal answer.3 

Figure 6.1 shows a pseudo-code description of the iterative strengthening procedure. It relies 
on an underlying planner (the plan function) whose behavior is minimally specified: the planner 
must accept parameters of the goal to solve, the current optimality constraints, and the most recent 
solution to the goal, and must return a solution to the goal that does not violate the constraints if 
such a solution exists. 

Although iterative strengthening may take longer to find the final optimized plan than an 
algorithm such as A* [46, 79]4 (because of the overhead costs incurred by multiple passes over the 
same search space), iterative strengthening has the advantage that it can be interrupted at any 
time after the initial plan is found and will always have a valid plan available for the user. Since 
this initial plan is found using satisficing criteria instead of optimizing criteria, it is likely that 

iterative Strengthening is fully supported in the Lisp Inference Engine and is partially supported in DALI. 
3TechnicaIly, the last solution is optimal modulo 6. All plans with values in [n — 6, n) are considered equivalent, 

and the first such plan located is returned. 
4A* is representative of a general class of heuristic search algorithms. The significant property of A* is that if the 

heuristic is chosen appropriately, A* is guaranteed to terminate with an optimal solution and is guaranteed not to 
backtrack. See Section 6.4. 
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begin procedure iterative-strengthenmg(#oa/, increments) 
constraints <— <fi; 
answer *— p\&n(goal, constraints, (j>); 
if (answer = <f>) 

then return("No solution"); 
else begin loop 

if (user-interrupt) 
then return("Best solution so far is", answer); 

constraints <- strengthen(constraints, increments, answer); 
new-plan <— plan(<jroa/, constraints, answer); 
if (new-plan = <j>) 

then return("Optimal solution is", answer); 
else answer <— new-plan; 

end loop; 
end procedure. 

Figure 6.1: The iterative strengthening algorithm. 

iterative strengthening will generate a valid plan significantly faster than algorithms such as A*. 
In other words, iterative strengthening supports incremental improvements to existing valid plans; 
it can deliver an initial plan promptly and then spend any remaining time improving it until an 
optimal plan is discovered or until the available planning time is exhausted. 

6.3    Flexibility of Optimality Criteria 

One of our goals was to make iterative strengthening as flexible as possible regarding optimization 
criteria; in particular, we did not want to require domain knowledge engineers to write entirely 
separate sets of planning rules for each type of optimization. There should be a partition between 
the domain knowledge and the search expansion rules. We have accomplished this flexibility by 
using two runtime-configurable hooks: 

opt-eval is a pointer to a function that evaluates the objective function for a partial plan. It 
takes as parameters the current values of the parameters to optimize and the current partial 

plan. 

strengthen is a pointer to a function that calculates the new optimization parameters during 
the next iteration of the iterative strengthening function. It takes as parameters the current 
values of the optimization parameters, the increments to apply to those parameters, and the 
last successful plan. The reason for including the last successful plan is that for certain types 
of optimization we may be able to exploit any "lucky" improvements beyond the current 
parameters that were discovered in the last plan. 

Using these hooks, it is possible to write planning rules for generic optimality functions. Typi- 
cally, the underlying planner will call the opt-eval function every time the current plan has been 
extended; if the extended plan exceeds the optimization parameters, the planner can backtrack 
immediately.   Similarly, each time a complete plan has been found, the iterative strengthening 
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module itself invokes the strengthen function to further constrain the search parameters for the 
next iteration. 

To optimize on a different set of optimality criteria, it is necessary to change only these two 
hooks to point to different functions. The underlying knowledge base and set of planning rules 
need not change at all. 

It is possible to optimize over multiple objective functions (for example, optimizing a transporta- 
tion plan to minimize both the number of aircraft used and the flight time), but it is necessary 
to resolve ambiguities in defining both the opt-eval function and the strengthen function. For 
example, if plan A takes 10 hours and uses 5 aircraft, and plan B takes 12 hours and uses 4 aircraft, 
which plan is "better"? Likewise, once plan B is found, should the strengthening function decrease 
both the time and the number of aircraft, decrease just time, or perhaps decrease time and increase 
the number of aircraft (to look for a potentially large improvement in transportation time at the 
expense of a slightly larger number of aircraft)? 

One possible resolution is to distinguish between major and minor objective functions. We first 
optimize on the basis of the major parameter, then we start restricting the minor parameters to 
choose among plans with the same value in the major parameter.5 In the example above, if we use 
time as the major parameter, we first search for the fastest plan, and once we find that plan, we 
search for the plan that uses the minimum number of aircraft among those plans with the fastest 
time. This approach can be extended to cases of more than two parameters. 

The particular implementation of iterative strengthening used by the ALPS Lisp Inference 
Engine can be described by specifying the definitions of the configuration hooks. The opt-eval 
function recalculates the parameters from the last successful plan (ignoring the current optimization 
parameters) and applies the increments to those updated parameters. The plan function invokes 
the ALPS inference engine on the top-level goal. ALPS does not directly use the previous answer 
to guide the search for the next answer; however, since the Lisp Inference Engine is able to preserve 
the state of the search space from one invocation to the next, ALPS will restrict its efforts to that 
part of the search space not yet explored. For the transportation domain, ALPS has strengthen 
functions for criteria such as total transport time, number of aircraft, and probability of success. 

6.4    Node Expansion Requirements 

Planners that are designed to produce optimal solutions typically implement some form of best-first 
search, often based on an algorithm such as A* [46, 79]. In these systems, each node in the implicit 
search tree of partial plans is associated with a function that measures the "goodness" of the plan 
so far, along with a heuristic estimate of how good the best complete plan extended from this 
position will be. At each choice point in the tree, the system compares the evaluation function of 
all nodes that have been generated but not expanded and selects the best one for expansion. This 
method has the property that if suitable heuristic functions are used, the first complete plan found 
is guaranteed to be the best. 

In contrast, planners whose underlying inference engines are resolution theorem provers almost 
always focus on satisficing solutions rather than optimizing solutions. Rule selection, unification, 
and backtracking all occur in a fixed order, and only the first solution generated is of interest. 
Although some implementations allow permuting the order of choice points based on some fixed 
evaluation function, it is rare to allow suspending one search path, investigating another path, and 
returning to the first one (a necessary requirement for best-first search). 

Recall that the major parameter is optimized modulo 6 and may produce a large equivalence class of plans with 
approximately the same value of the major parameter. 
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One desirable property of iterative strengthening is that it does not depend on the order of node 
expansion. The underlying planner is free to expand the search space any way it wants to. This 
makes optimal planning available to a wide variety of planning architectures, including our ALPS 
system, that otherwise would not be able to address optimization issues. 

6.5    Admissibility Requirements 

As with the A* search algorithm, the basic version of iterative strengthening requires an admissible 
search heuristic. There are two requirements for an admissible heuristic: it must be monotonic and 
optimistic. The monotonicity requirement states that during the course of a search, a maximizing 
heuristic must never increase and a minimizing heuristic must never decrease. The optimism 
requirement states that a maximizing heuristic must never underestimate the final value, and a 
minimizing heuristic must never overestimate the final value. The effect of these two requirements 
is that as soon as a partial plan violates the current optimization cutoff, the entire subtree rooted 
at that partial plan can be pruned because all possible extensions of the partial plan are guaranteed 

to violate the cutoff. 
Note that while both the search heuristic used by A* and the optimality heuristic used by 

iterative strengthening measure the same thing (essentially a prediction of the "goodness" of any 
complete plan rooted at the current partial plan), the two algorithms use the heuristics in different 
ways. A* uses the heuristic to stop and restart various search threads, expanding one partial plan 
while keeping the rest on a priority queue. Iterative strengthening uses the heuristic to prune 
subtrees of the search space that are guaranteed not to contain the optimal answer. 

In many circumstances, iterative strengthening's optimization criterion can be used directly as 
an admissible search heuristic. For example, if we want to minimize the number of aircraft used in 
a transportation plan, we can simply use the number of currently allocated aircraft as an admissible 
heuristic. This heuristic is guaranteed to be both optimistic (it will always underestimate the final 
number of assigned aircraft) and monotonic (it will only increase as we add more aircraft later in 
the plan). 

Unfortunately, not all optimizing functions can be translated directly into an admissible search 
heuristic. For example, if we wanted to maximize the number of aircraft instead of minimizing 
them (possibly because using more aircraft may lead to a transportation plan that is more resistant 
to delays), we cannot use the number of aircraft currently allocated for the search heuristic because 
it is neither monotonic6 nor optimistic.7 

This example illustrates a fundamental difference in complexity between searching for minimiz- 
ing and maximizing solutions. In the example above, if we are minimizing the number of aircraft 
and we have already found one solution that uses n aircraft, we can reject any partial plans as soon 
as they exceed n aircraft because we know it cannot possibly be an optimal plan. On the other 
hand, if we are trying to maximize the number of aircraft, we cannot abandon a partial plan just 
because it has less than n aircraft; it may be that the very last step in the plan will require several 
aircraft that will push the total over n and lead to an optimal plan. This possibility implies that 
we need to search each partial plan to completion to decide whether it is better than the current 
optimal plan. To state it another way, an admissible search function allows us to prune the search 
space as soon as the current optimal plan is exceeded, while with inadmissible functions we must 
continue to search until the search space is exhausted. 

6It is monotonically increasing for a maximizing function, which is not allowed. 
rIt turns out that in a simplified domain where each cargo requires exactly one aircraft, it actually is possible 

to define an admissible heuristic by maximizing the number of aircraft currently assigned plus the number of cargo 
units currently unassigned. But in general, the inverse of an admissible heuristic is often not admissible. 
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Figure 6.2: Admissible vs inadmissible heuristics for iterative strengthening. Problems are arranged 
in approximate order of increasing difficulty for naive non-optimized search. 

Even though it may be much more expensive to search for an optimal plan using inadmissible 
optimization criteria, there may be situations where it is necessary. The iterative strengthening 
algorithm can be easily extended to support search for inadmissible heuristics, but at a substantial 
runtime penalty. The basic concept of iterative strengthening remains the same: the system finds 
the first solution with an unconstrained optimization parameter. It then strengthens the constraints 
on the optimization parameter based on the strengthen function. But when the underlying planner 
searches for subsequent solutions, it will test the constraint values only after it has found a candidate 
plan, rather than use the constraints as a threshold cutoff to force backtracking as soon as a search 
path exceeds the optimization parameter. 

Figure 6.2 shows the effect of using an inadmissible heuristic on a suite of 20 transportation 
scheduling problems. In both instances the optimality criterion is to maximize the probability 
of success of the resulting plan; the only difference is that in one set of trials the heuristic was 
encoded as an inadmissible heuristic. In cases where the first plan found happens to be the optimal 
plan, the admissibility of the heuristic does not make any difference. However, in several cases the 
inadmissible version required 5-25 times as much effort to find the optimal plan. 

These results indicate that end users should choose their heuristics carefully and must be pre- 
pared for significant performance penalties if they select inadmissible heuristics. On the more 
positive side, most other optimizing algorithms cannot use inadmissible heuristics at all, and those 
that can will necessarily be forced to pay the same performance penalty since it is inherent in 
the problem. And even more encouragingly, the admissibility of the optimality heuristic has abso- 
lutely no impact on finding the first satisficing solution, so iterative strengthening can still be used 
effectively as an anytime algorithm even with inadmissible heuristics. 

6.6     Decidability Requirements 

In order to guarantee an optimal solution, iterative strengthening requires that the domain theory 
and the underlying planner are decidable: given any query in the domain language, the planner 
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must either return a valid plan or report failure. Decidability is required because the final step 
of the iterative strengthening algorithm involves a search to determine that there are no superior 
plans. Unfortunately, many domains are undecidable with resolution theorem provers (for example, 
most encodings of recursive rules and frame axioms in situation calculus violate decidability). 

There are two ways to get around the decidability requirement. One is to sacrifice completeness 
by enforcing a limit on each iteration of plan improvement based on how long it took to find the 
current plan; this limit could be expressed as search depth, number of nodes expanded, or CPU 
time. If the search exceeds the limit, the planner will report failure and return the last successful 
plan as the optimal answer (even though there may have been a better plan that was not found). 

The second method is even simpler: since iterative strengthening is designed to be an anytime 
algorithm, termination conditions may not be terribly important. The user can interrupt the system 
at any time and demand the best answer so far; eventually, the user will get tired of waiting and 
decide that the current answer is good enough. 

Neither of these methods is particularly satisfying, since the user will never know whether the 
answer is really the best. However, as with admissibility, the inherent difficulty of the problem 
means that no other algorithm can expect to do any better, and these methods allow iterative 
strengthening to perform in situations that most other optimizing algorithms cannot handle at all. 

6.7    Discussion 

The appropriateness of iterative strengthening depends on properties of the domain, the application, 
and the implementation. 

Although iterative strengthening can be used in any domain (possibly using the extensions above 
to overcome admissibility and decidability requirements), it is more efficient in some domains than 
in others. Specifically, iterative strengthening will perform best in domains with the following 
properties (listed in decreasing order of importance): 

1. The solution space is sparse with respect to unique optimizing function values, relative to 
the granularity of the strengthen increment size. A consequence of this property is that the 
iterative strengthening algorithm will need to loop only a small number of times to progress 
from the first satisficing solution to the final optimal solution. 

2. The optimality function is admissible. A consequence of this property is that the theorem 
prover can backtrack and the search space can be pruned as soon as the current optimality 
parameters have been exceeded. 

3. The domain theory is decidable. A consequence of this property is that the iterative strength- 
ening algorithm will terminate with an optimal answer without sacrificing completeness or 
correctness. 

4. Changes to the optimality evaluation become incrementally smaller as a plan is constructed. 
This means that backtracking and pruning can occur early in the search during each iteration 
(and hence a larger subtree can be pruned), which helps only if the optimality function is 
admissible. 

5. The solution space is dense with respect to unique solutions. In this case, an initial satisficing 
plan can be found rapidly. However, note that a dense solution space will impede optimal 
search unless those solutions are clustered around sparse optimizing function values. 
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If all five of these properties hold, then iterative strengthening will perform almost as well as 
satisficing search. At the other extreme, in the worst scenario (an inadmissible optimality function 
and a large number of solutions all with unique optimizing values), iterative strengthening may 
perform even worse than exhaustive search because it will not prune and will search several areas 
of the search space multiple times. 

Iterative strengthening is particularly appropriate in applications where anytime behavior is 
desired. As discussed above, if the implementation of the underlying inference engine is such that 
search control is fixed and cannot be altered, then iterative strengthening may be the only feasible 
method. Also, if the optimality constraints are inadmissible or the domain theory is undecidable, 
iterative strengthening may again be the only choice. 

6.8     Summary 

The basic ideas behind iterative strengthening are not new; they are closely related to the general 
technique of branch and bound [61, 79], which has been used for many years. Our contributions are 
to offer a particular formalization of this technique, to analyze the properties of this formalization 
under various situations, and to demonstrate the usefulness of this method in a specific imple- 
mentation within the ALPS system. We have shown how iterative strengthening can be modified 
to deal with inadmissible optimality criteria and undecidable domain theories that are-typically 
excluded by other methods, and we have discussed the tradeoffs involved in these modifications. 
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Chapter 7 

Combining Multiple Speedup 
Techniques 

This chapter describes the effects of applying multiple speedup techniques simultaneously 
in ALPS. Our experiments indicate that combining techniques can produce synergistic 
effects both by enhancing the speedup properties of single techniques and by decreasing 
the overhead cost associated with single techniques.1 

7.1 Introduction 

Speedup learning techniques are rarely studied in combination. When studied individually, it is 
difficult enough to tell whether a given speedup technique's advantages outweigh the problems it 
introduces. For example, while the use of EBL may provide some reduction of search, indiscriminate 
application may also entail some increase in search. As noted previously, it is also difficult to 
draw reliable conclusions about the performance effects of a single speedup learning technique 
from experimental data. These problems are only compounded by conflating effects of multiple 
techniques. 

The message of this section is that speedup techniques show even greater strength in combina- 
tion than their individual performance might imply. We base this observation on an extension of 
the empirical evaluations described in previous chapters that combine caching with the EBL*DI 
algorithm, the nagging algorithm, and the iterative strengthening algorithm. 

7.2 Combining Caching and EBL 

In this experiment, we performed four trials using four distinct configurations of the same theo- 
rem prover. For each trial, the theorem prover performed depth-first iterative-deepening with an 
increment of 1, and was therefore emulating the exploration order of breadth-first search. Each 
trial consisted of one or more passes through the 26 randomly ordered blocks world problems used 
previously (Experiment 1). Each problem was solved once by the control system in order to de- 
termine a difficulty parameter ej/s. For each trial, we fixed a maximum resource limit of 600,000 
nodes searched per problem. 

In the first trial, we measured the performance of the non-caching, non-learning, iterative- 
deepening theorem prover. As before, we used the regression slope obtained from this trial as a base 

1This chapter is adapted from work presented in [90, 12]. 
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Figure 7.1: Search performance of a non-caching iterative-deepening theorem provertm'2ö problems 
from a situation-calculus domain theory. 

value for comparison with the other systems. In the second trial, we added an LRU success/failure 
cache of 45 entries to the same system used in the first trial. In the third and fourth trials, 
we measured the performance of the same theorem prover augmented with an EBL*DI learning 
element and then with both an EBL*DI learning element and an LRU bounded-overhead cache. 
For each trial, we analyzed the resulting data using the simple one-parameter linear regression 
model of Equation 3.3. The slopes obtained indicate the relative sizes of the search space explored 
for the different theorem prover/cache combinations. Slopes significantly smaller than the base 
value obtained in the first trial indicate an overall reduction of search space explored. 

Figure 7.1 illustrates the search performance of the base system (compare with the time per- 
formance of Figure 3.1). All 26 problems were easily solved within the resource limit (in fact, all 
problems are solved searching less than 30,000 nodes). The computed regression slope and stan- 
dard error, log(6) = 1.026 ± .004, serve as a basis of comparison for the other systems tested in 
subsequent trials. 

Note that the computed regression slope implies that this system explores relatively more nodes 
than the control breadth-first search theorem prover, which would yield a slope of exactly log(6) = 1 
when measured against itself. While this comparison is invalid (the two systems' node expansion 
costs c are not even roughly equivalent), the increase in nodes explored is as expected, given that 
the system is performing iterative deepening with an increment of 1. Depending on the problem 
population, increasing the increment value may substantially reduce the computed regression slope. 

Figure 7.2 shows the search performance of the second trial (bounded-overhead LRU caching 
system with a cache size of 45). The computed regression slope and standard error in this case 
is log(ö) = .902 ± .007, indicating significantly fewer nodes are explored by the caching system 
than the base system of Figure 7.1. While the caching system's overhead will increase the node 
expansion cost c to some small degree, efficient indexing strategies combined with the relatively 
small cache size allow us to consider the respective c parameters to be roughly equivalent, enabling 
direct comparison with the base system's computed regression slope. 

By comparison, an infinite-size (i.e., unbounded overhead) caching system yields a computed 
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Figure 7.2: Search performance of an iterative-deepening theorem prover with a 4o-element LRU 
cache on 26 situation-calculus problems. 

regression slope and standard error of log(&) = .849 ±»011. However, after solving all 26 problems, 
the unbounded-overhead system contains a total of 15,447 entries (only 2,033 of which served to 
provide cache hits at some subsequent time); indexing into a cache this size each time a node is 
explored will have a large effect on c making direct comparisons with the base system untenable. 

Intuitively, the effects of caching are clearly visible when comparing Figure 7.2 directly with 
Figure 7.1. Certain problems are helped by the presence of cache entries, and datapoints corre- 
sponding to such problems shift downwards in Figure 7.2 (recall that the cost of solving any given 
problem with the control system is invariant, thus datapoints can never shift left or right). By 
minimizing the sum of the squares of the errors, linear regression provides a good estimate of the 
slope over the entire problem distribution. As the datapoints spread downwards, the regression 
slope decreases, reflecting the need to search fewer nodes (on average) over all problems in the 
population. 

In the third trial, we measured the performance impact of the EBL*DI algorithm. Since this is 
critically dependent on which problems are used in constructing new macro-operators, we altered 
the experimental procedure slightly to control for this parameter. We performed 20 passes over the 
26 problems, each time selecting two problems as training examples and measuring performance of 
the original domain theory plus the two new macro-operators on the remaining 24 problems. On 
eleven passes, all 24 problems were solved within the resource limit, while on the nine remaining 
passes some of the problems were not solved within the resource bound. For the nine incomplete 
passes, we made (optimistic) estimates of search space explored by treating unsolved problems as 
if they were solved after exploring the entire resource limit. 

When analyzed individually, the regression slopes for complete passes ranged from a low of 
log(6) = .745 ± .061 to a high of log(6) = 1.250 db .074 (for incomplete passes, these ranged from 
log(6) = .774 ± .071 to log(6) = 1.334 ± .096). Ten of eleven complete passes searched significantly 
fewer nodes than the base system, while only two of nine incomplete passes did so (even though 
these are optimistic estimates of performance!). A somewhat more useful analysis is shown in 
Figure 7.3; all 480 datapoints obtained in 20 passes over 24 problems are plotted and analyzed 

92 



EBL* (20 passes) 

log(e) 

Figure 7.3: Search performance of an iterative-deepening theorem prover using EBE^DT-on TWO ran- 
domly selected problems for the remaining 24 situation-calculus problems. 20 trials, 480 datapoints; 
multiple datapoints may coincide in the plot. 

together (note that the computed regression slope obtained here is directly comparable to the 
computed regression slopes for single trials, while the standard error values are not). 

As with caching, the effects of learning are clearly visible in the plot. Some problems are 
helped by the new macro-operators; their corresponding datapoints have shifted downwards. Other 
solutions are less efficient with the additional macro-operators; their corresponding datapoints 
have shifted upwards. The computed regression slope and standard error for the collected trials, 
which represents the average expected search performance over the entire problem distribution, is 
log(6) = 1.058 ± .019. This (optimistic) estimate of overall search performance factors out exactly 
which problems are selected for training, indicating that using this particular EBL algorithm and 
learning protocol is not a good idea unless one has some additional information to help select 
training problems. 

A similar procedure is used to measure the performance of the combined EBL*DI and bounded- 
overhead caching system. Each pass in this trial used the same randomly selected training problems 
as in the last trial: all 24 problems were solved within the resource bound on each and every pass. 
Here, the individually analyzed regression slopes ranged from a low of log(6) = .666 ± .050 to a high 
of log(i) = 1.244 ± .054. Seventeen of twenty passes performed less search than the base system 
of Figure 7.1. The combined 480 datapoints are shown in Figure 7.4; the computed regression 
slope and standard error are log(6) = .896 ± .014. This result implies that, independent of which 
problems are selected for learning, the use of EBL*DI and a fixed-size LRU caching system will 
search significantly fewer nodes than the base system tested previously. 

There are several observations we can make about the results reported here. 

1. These results reflect reductions in search space explored and not necessarily improvements in 
end performance when measured by elapsed CPU time. Of course, savings in search space 
explored usually translate into lower elapsed times, but this is highly dependent on system 
implementation (i.e., the actual value of c in our model). 

93 



log(e) 

EBL* plus LRU Caching (20 passes) 
T 

Figure 7.4: Search performance of an iterative-deepening theorem prover using a'W^remeht LRU 
cache and EBL*DI on two randomly selected problems on the remaining 24 situation-calculus 
problems. 20 trials, 480 datapoints; multiple datapoints may coincide in the plot. 

2. The search reductions obtained by an unlimited size caching system (log(ö) = .849 ± .011) 
reflect the theoretical upper bound on the search space reductions attainable via caching. 
These reductions are simply wishful thinking, since they can only be achieved by adding an 
unbounded overhead. Fixed-overhead caching is a practical compromise; it carries some lim- 
ited performance penalty (cache overhead) and delivers some portion of the speedup attained 
by unbounded-overhead caching. 

3. The use of EBL*DI alone under these experimental conditions runs afoul of the utility prob- 
lem. While the results obtained on some individual passes are encouraging, returning better 
reductions in search than even the unbounded caching system, they represent a best-case 
scenario. The penalty imposed for badly-chosen training problems makes unguided use of 
EBL*DI unacceptable in the limit. We might well draw a different conclusion if we had some 
more informed way of deciding what to learn, managing what has been learned, or if we were 
to learn from a different number of problems. 

4. Finally, the most striking result is that the combined EBL/caching system not only produces 
greater search reductions than the (optimistic) estimates for EBL alone, but on average 
achieves practically the same search reduction as the unbounded-overhead caching system. 
Given that the EBL/caching system displays bounded overhead (i.e., its c parameter is dom- 
inated by the unbounded-overhead system's c parameter), we can conclude with confidence 
that it will outperform a similarly implemented unbounded-caching system. 

Why do EBL*DI and subgoal caching work so well together? EBL*DI, like any EBL algorithm, 
introduces redundancy in the search space and therefore suffers from the utility problem, which, 
loosely stated, results from backtracking over these redundant paths. Success and failure caching 
both serve to prune redundant search, by recognizing the path as either valid or fruitless. Thus 
caching can work to reduce the utility problem, resulting in greater average search reductions. 
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Figure 7.5: Potential for redundancy control through success cache. When a repeated subproof for 
the same branch is detected backtracking is performed immediately. 

This effect is clearly visible when comparing Figures 7.3 and 7.4; problems below the regression 
line occupy roughly equivalent positions in both plots. Yet problems adversely affected by the 
presence of learned macro-operators in Figure 7.3 (datapoints above the regression line) are not 
affected nearly so much when caching is enabled (Figure 7.4). This is one example of a kind of 
speedup synergy that occurs when applying multiple speedup learning methods. Here, one technique 
(caching) mitigates a flaw in another technique (the EBL utility problem). Another example of 
speedup synergy arises when combining success and failure caching, as described in Section 3.3.5. 

7.3    Combining Caching and Nagging 

DALI is able to use the same general types of caching schemes that are available to the Lisp 
Inference Engine. DALI exploits cached search information in three ways. Through success caching, 
it records the labeling of branches that have been successfully closed. If a similarly labeled branch 
is encountered elsewhere in the search, the cached record of prior success may, under appropriate 
conditions, be used to avoid re-deriving a subproof. DALI's failure cache is used to record branches 
for which no subproofs were found. If a matching branch is encountered later, the search engine 
may backtrack immediately. Finally, DALI's redundancy avoidance cache capitalizes on a secondary 
use of success cache entries. For many theories, there is more than one way of proving the same 
thing. In Figure 7.5, for example, the p(Y) branch has two proofs that both bind Y to b. When the 
leftmost branch is closed in node A&, a success-cache entry is made for p(b). The binding of Y to b is 
implicit in the cached label. In node Ac, the variable Y is again bound to b via a different subproof 
for the same branch. Insertion of this new success into the cache finds p(b) already present. To 
exploit this, DALI retains information about which branches are responsible for each success-cache 
entry. Each time a success pattern for branch ß is inserted, the caching mechanism checks to see if 
that pattern has already been inserted on behalf of ß. If it has, the search immediately backtracks 
to find a different subproof for ß. This policy is much like the anti-lemmata used in SETHEO [62]. 

In all of its caching schemes, DALI uses an approximate mechanism for remembering and 
matching tableau branches. Instead of storing the labeling of all nodes on the branch, it records 
only the label of the leaf. This relaxes the conditions necessary for matching a cache entry and 
is just as accurate for Horn-clause theories.  For non-Horn theories, it is easy to enforce a set of 
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sufficient conditions for when this leaf label is a sufficient basis for a match. Unfortunately, these 
conditions forbid the use of failure caching when non-Horn clauses are present. 

Using caching and nagging together requires some coordination. For example, when nagging 
prunes a subtree from the master's search, it interrupts the master's attempt to close some branches 
of the tableau. Even though the master may not yet have found subproofs for these branches, the 
failure caching mechanism must be forbidden from recording them as branches that could not be 
closed. 

In general, caching schemes compromise myopia because they use the history of the search as 
a predictor of future success and failure. Naturally, their effects depend on the population of the 
cache and on what portions of T are explored first. Unfortunately, this means that adding nagging 
to a caching system may actually degrade performance. By pruning the search in one part of T, 
nagging may deprive the cache of some of the search results it would have otherwise learned. The 
absence of these cache entries may seriously impair the search in subsequent parts of T. 

Mitigating this problem to some extent is the fact that each process may manage its cache 
independently, populating it with entries specific to its own experience.2 In fact, differences between 
the caches of each parallel process may be desirable or even necessary. When nagging under A, for 
example, the nagger's domain theory differs from that of its master. Consequently, its cache entries 
are not compatible with the tableaux generated by neighboring processes. More generally, the 
cache entries of one process may be useful in reducing its own search but may be significantly less 
useful in assisting the search in some different, transformed problem. By permitting each process 
to maintain its own cache, each is given the opportunity to populate it with entries that will be 
most useful against its particular transformed problems. 

7.4    Combining Caching and Iterative Strengthening 

One disadvantage of the iterative strengthening optimization technique presented in Chapter 6 
is that, as with all iterative algorithms, it spends a significant percentage of its time searching 
areas that have already been covered during a previous iteration. This redundant effort can be 
significantly reduced through the use of failure caching. If a particular subgoal has been exhaustively 
shown to fail, that result can be stored in a cache; when that same subgoal is encountered on the 
next iteration, the planner can retrieve the failure from the cache in constant time and backtrack 
immediately. 

We tested this method in the ALPS Lisp Inference Engine by running iterative strengthening 
on the same set of problems as in Figure 6.2, using a fixed-size cache with a least-recently-used 
replacement strategy. For this experiment, we disabled ALPS' ability to retain state space infor- 
mation between iterations in order to provide a fair comparison for other systems that do not have 
this feature.3 We tested several cache sizes, ranging from 0 elements to 1000 elements. The results 
indicate that failure caching and iterative strengthening work very well together, and that caching 
has the most benefit on the largest problems (in certain cases there was a sixfold improvement). 
Figure 7.6 illustrate these results, plotting number of unifications needed for each problem using 
different cache sizes. 

This is in contrast to the typical use of caching in a memory system, where it is necessary to insure cache 
consistency between parallel processes. When performing caching in combination with nagging, master and nagger 
do not need to worry about the possibility that their cache contents differ. 

For this experiment, ALPS was run using an iterative deepening breadth-first search strategy with a depth 
increment of 1. Figure 7.6 does not distinguish between the benefits due to cache hits on iterative strengthening 
iterations and the benefits due to cache hits on iterative deepening iterations. 
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Figure 7.6: Benefits of caching for iterative strengthening. Problems are arranged in approximate 
order of increasing difficulty for naive non-optimized search. 

However, while this type of analysis shows the potential benefit of caching, it does not necessarily 
demonstrate any practical benefit. When we measure how much processing time is actually saved 
by caching, Figure 7.7 shows a much different picture. For this particular implementation and 
domain theory, the overhead for caching erased almost all savings in unification: for many of the 
benchmark problems, the actual runtime was significantly slower with failure caching than without. 
This slowdown is because most of the cache entries for this domain are very large and expensive 
to search. In a subsequent experiment, we carefully analyzed the frequency of cache hits for each 
domain predicate and designed a customized caching strategy that cached only those predicates 
that are known to have low overhead and high hit probability in this particular domain. With this 
custom cache, ALPS achieved a modest runtime speedup of approximately 5%. 
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Chapter 8 

The ALPS Fast Scheduler and the 
Transportation Domain 

This chapter describes the motivation, development, and performance of the ALPS "Fast 
Scheduler" for large-scale military transportation planning.1 

Although the general goal of the ALPS project has been to develop general-purpose adaptive 
learning and planning techniques, the particular application we have addressed within the ARPA / 
Rome Laboratory Planning Initiative (ARPI) has been large-scale military transportation schedul- 
ing (see Section 1.1). When we first started developing our transportation domain theory, we ran 
into scaleup problems almost immediately: we could solve only about 100 cargos before the pro- 
totype ALPS Lisp Inference Engine exhausted all available memory, and it took up to an hour to 
get an answer for the larger problems. At first, we assumed that these problems were simply due 
to an inefficient first attempt at the domain theory, and that a combination of optimization and 
porting to the more efficient DALI inference engine would solve the problems. Doing those things 
did in fact give us one order of magnitude scaleup, but we were still stuck at between 500-1000 
cargos. After trying several different approaches to improve the efficiency of the domain theory, 
we were able to solve certain problems with up to 2500 cargos; however, the performance was still 
unacceptably slow (on the order of several hours for 2500 cargos). 

After further analysis, we concluded that one reason for the scaleup problem is that by treating 
scheduling as a logical domain, many useless intermediate results are maintained on the backtrack- 
ing stack, even though we will never backtrack over them. For example, it is very expensive to 
recursively descend large lists because all sublists will be saved on the stack, even though we may 
know a priori that we will process the list only once. These results suggested that a strictly logical 
approach may never scale up fully in this class of scheduling problems because of the extreme 
memory requirements. 

Faced with this conclusion, we looked for alternative approaches that still retained the spirit of 
the ALPS architecture. We took the basic domain theory developed for the Lisp Inference Engine 
and translated it directly into straight Lisp code. In most cases, this approach would not have 
been possible because by definition a logical domain theory does not contain any information on 
the order in which rules are executed (the execution order is controlled by the inference engine). 
However, in this case, we had already carefully ordered the rules while trying to optimize the 
theory, and we had constructed the theory in such a way that an answer could always be found 
with no backtracking over rules. Therefore, we could write a Lisp procedure that simply executed 

This chapter is adapted from [21]. 
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each translated rule in the same order that the inference engine would have. By doing this, we 
could guarantee that our new Lisp program would get the same answer that the original domain 
theory would have produced, without the overhead inherent in the interpretation of logical rules. In 
particular, all recursive processing of lists could be done directly in Lisp and compiled into straight 
inline code; we could also use global hash tables to store much of the information more efficiently. 

The net result is that we built a single domain-specific scheduler (referred to in this paper as the 
"Fast Scheduler") that can solve TPFDD problems much more quickly than either the Lisp or DALI 
inference engines. We lose many of the adaptive properties of the core inference engines (caching, 
explanation-based learning, probabilistic theory revision, and distributed capabilities). We also 
lose the reusability of a core inference engine; to use a new domain theory, we would have to write 
a whole new program from scratch. However, we gain a dramatic increase in speed and scaleup: 
we have solved problems with 50 squadrons of aircraft and 10,000 cargos in about 3.5 minutes. 
This result more than justifies the loss of some speedup techniques that, while very effective in 
other domains, were not producing significant speedup in this domain anyway. See Section 11.2 
for a further discussion of the relationship between the Fast Scheduler and the adaptive logical 
techniques developed during the ALPS project. 

8.1    Evaluating the ALPS Fast Scheduler 

To evaluate the ALPS Fast Scheduler and compare its performance against the other two inference 
engines, we needed a set of scalable transportation problems. The database files produced dur- 
ing military transportation scheduling exercises are called Time-Phased Force Deployment Data 
(TPFDD) files [50]. These files contain 86 fields for each cargo to be transported, providing infor- 
mation on such things as cargo size, type, origin, destination, intermediate points, preferred mode 
of transportation, and deadline restrictions for departure and arrival. A medium-sized TPFDD file 
may contain several thousand cargo records. Associated with TPFDD files are Geographic Loca- 
tion (GEOLOC) files describing the properties of all geographic locations mentioned in the TPFDD 
(location type, mapping from GEOLOC code to full name, and coordinates in latitude/longitude). 

Because actual TPFDD problems are quite difficult to acquire due to their sensitive nature, we 
decided to write an automated random TPFDD generator (the TGEN module). TGEN can generate 
full TPFDD datafiles of arbitrary size and complexity. It can use both air and sea transport 
involving any location defined in a GEOLOC file. It is not restricted to a fixed set of pre-defined 
cargos or vehicles, but rather will generate appropriate cargos, airplanes, and ships on the fly. 
TGEN makes a fairly thorough attempt to ensure that the TPFDD it produces is both realistic and 
reasonable: it does appropriate clustering of ports of debarkation (PODs) and it verifies that each 
random cargo has at least one vehicle capable of transporting it from its origin to its destination 
within the allotted time. TGEN has turned out to be a very useful tool for producing scalable 
unclassified transportation scheduling problems. 

To test the ALPS Fast Scheduler, we used TGEN to generate a scheduling problem with 50,000 
cargos and 50 squadrons of aircraft and seacraft. Each squadron contains up to 32 identical vehicles 
selected from ten different vehicle types (five ship types and five aircraft types). The cargos and 
vehicles are based at random commercial US airports and seaports, and the destination is a cluster 
of airports and seaports around Puerto Rico. Delivery times are padded up to 30 days to simulate 
a one-month buildup of supplies at the destination. We used this base specification to construct a 
scaled set of increasingly difficult problems by selecting the first n cargos from the full specification 
(where n ranges from 10 to 50,000). 

Figure 8.1 compares the performance of the three inference engines running on this set of 
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elapsed runtime (hh: mm:ss) memory used (MB) 
# Cargos Lisp DALI Fast Fast(*) Lisp DALI Fast Fast(*) 

10 1:28 0:09 0:01 0:01 17 19 15 15 
20 3:13 0:17 0:01 0:01 21 19 15 15 
30 5:17 0:25 0:01 0:01 28 20 15 15 
40 6:57 0:31 0:01 0:01 38 20 15 15 
50 11:06 0:39 0:01 0:01 52 21 15 15 

100 1:26 0:02 0:01 24 15 15 
200 3:03 0:03 0:02 31 15 15 
300 6:13 0:04 0:02 42 15 15 
400 10:00 0:07 0:03 85 15 15 
500 0:07 0:03 15 15 

1000 0:17 0:08 15 15 
2000 0:51 0:22 15 15 
3000 1:34 0:41 15 15 
4000 2:21 1:00 15 15 
5000 3:14 1:20 15 15 

10000 8:53 3:35 18 19 
20000 27:09 11:03 25 25 
30000 1:15:18 28:04 33 33 
40000 2:28:17 54:18 39 40 
50000 4:09:46 1:29:04 49 46 

Figure 8.1: Comparison of three ALPS inference engines on transportation scheduling problems 
with 10 to 50,000 cargos. The "Fast(*)n test was run on a Sun Sparc5 with 64MB RAM and 190MB 
swap; all other tests were run on a Sun SparcIPC with 32MB RAM and 100MB swap. Tests were 
aborted if they exceeded the available memory. 

problems. These results clearly indicate that the ALPS Fast Scheduler can successfully scale up to 
efficiently solve problems of the size found in real-life military transportation scenarios. 

8.2     Graphical User Interface 

ALPS has a graphical user interface (GUI) for use within the transportation domain.2 

Figure 8.2 shows a screendump of the ALPS TPFDD Scheduler interface. Buttons across the 
top of the screen allow the user to invoke the TGEN problem generator, the ALPS Fast Scheduler, 
the TPFDD Simulator, the Plan Repair module, and a configuration window for adjusting display 
parameters. Under the control buttons are three text windows showing the original problem state- 
ment, the schedule created by the inference engine, and a trace of each simulation event (other 
textual information is available as well). The main window consists of timeline displays for the 
entire schedule. Time units are in days, subdivided into hours. The left portion of each timeline 
identifies the squadron and the particular trip (leg of the journey). A vertical red bar next to the 

The GUI was written using the Tcl/Tk software package. Tel is an extensible general-purpose command language. 
Tk is a Tel extension that provides an interface to the X Window System. Tel and Tk are free, portable, and widely 
used. 
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Figure 8.2: The ALPS TPFDD Simulator. 
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squadron is a warning flag that the cargos on this trip were not transported within the allotted 
time. 

The right half of the timeline shows specific timing information for each trip. The top two bars 
(red and gray) illustrate the cargo departure/arrival time constraints from the original problem 
statement3 (these bars are missing if there is no cargo for this trip). The middle two bars (blue 
and black) show the departure/arrival intervals proposed by the inference engine. The six triangles 
on the bottom show the actual times that the simulator started each process (black = begin/end 
loading, red = begin/end flying, blue = begin/end unloading). Clicking with the left mouse button 
anywhere in the white area will display the cargo manifest for this trip (cargo sizes are expressed 
as a 5-tuple of passengers, bulk tons, oversize tons, outsize tons, and measurement tons). 

As an example, consider the second trip from Figure 8.2. This trip is identified as Squadron Al 
flying from PJFK (New York) to PMSY (New Orleans) and is further identified as transporting 
Cargo C00001 (10 bulk tons and 17 oversize tons, for a total of 27 measurement tons). The original 
problem statement specified that the cargo must leave New York no earlier than Day 0 and no 
later than Day 1, and must arrive in New Orleans by Day 1. The schedule that ALPS generated 
specifies that Squadron Al will leave between hours 17-21 and will arrive between hours 24-28. This 
schedule satisfies the original problem, but when the simulator attempts to execute this schedule, 
it discovers that loading and unloading the cargo takes less time than anticipated, and.the cargo 
actually arrives about 20 minutes too early in New Orleans. Because this schedule does not satisfy 
the original problem constraints for Cargo C00001, this trip is flagged as a failure. When this 
schedule is sent to the plan repair module, the departure time will automatically be adjusted to 
prevent this failure. 

For trips involving multiple cargos, the departure time interval represents the intersection of the departure 
intervals for all cargos (similarly for arrivals). 
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Chapter 9 

Iterative Plan Repair 

This chapter surveys our work on iterative plan repair as part of the ALPS project. We 
propose a domain-independent plan repair algorithm. We view the plan repair problem as 
constructing a new plan based on updated information of action and state descriptions. 
Our approach addresses this problem by iteratively generating subproblems based on 
the failed plan, using the original planner to solve the subproblems, and fitting the new 
subplans back into the original plan. We have adapted this general plan repair algorithm 
to the transportation scheduling domain. Based on different completions of partially 
ordered subschedules, we have implemented two complementary repair strategies that 
can be combined very effectively.1 

9.1    Introduction 

Automated planning systems are becoming increasingly more powerful. Planning applications now 
include domains such as circuit design, transportation scheduling, and internet navigation. As 
planners are applied to these realistic domains, plan failures are inevitable. A plan can fail because 
of inadequate modeling of the domain (either deliberate to gain efficiency or accidental due to 
modeling errors). A plan can also fail because of changes in a dynamic environment. The task of 
plan repair is to adjust a faulty plan to eliminate failures. 

There has been much active research in this area recently, and many techniques for plan repair 
have been proposed. Kambhampati [51] used validation structures to guide failure detection and 
repair. Hammond [45] used case-based reasoning techniques in his CHEF planner. Howe [49] 
presented several local repair techniques. There are also some domain dependent techniques in the 
literature; for example, Turner [110] suggested attaching "directives" to preconditions to handle 
plan failures. 

In this paper, we use "plan repair" for what some other researchers referred to as "failure 
recovery" [49]. That is, we are not concerned with failure detection or failure analysis. We assume 
that when a failure occurs, a simulator or an execution monitor detects and reports the failure. The 
plan repair module takes failure information (and possibly an updated domain theory) as input, 
and it produces a new plan as output. 

Once we separate failure detection and analysis from plan repair, the similarity between plan 
repair and plan generation becomes clear. Although a plan can fail for many reasons, repairing the 
plan involves the same inference process as generating the plan, and it should be possible to use 
the same planning system to perform both generation and repair. The main difference is that plan 

'This chapter is adapted from [117]. 

104 



repair can use the old plan as a starting point in the search. We use a basic heuristic assumption 
that most failures can be fixed with local modifications. If a failure involves global changes to 
the original plan, it is unlikely that any repair method will be better than simply replanning from 
scratch. 

We propose an approach that exploits this locality of plan repair and maintains the complete- 
ness property by doing iterative replanning. We repair a plan by retracting actions that are "local" 
to the failure, formulating a new planning problem based on the goals of those retracted actions, 
and solving that problem to generate a replacement sequence of actions. We do the retraction and 
replacement of actions iteratively until the resulting plan is correct. In some sense, our approach 
is similar to Howe and Cohen's [49] planner; they iterate through different repair methods while 
our method iterates through different subplans. Our repair strategy is complete, domain indepen- 
dent, and suitable for a variety of plan representations. It has been incorporated into the ALPS 
transportation scheduling system, both as a general-purpose technique and as a domain-specific 
refinement for the transportation domain [20]. 

The rest of this report is organized as following. In Section 9.2, we survey some plan repair 
techniques in the literature. In Section 9.3, we present the algorithms for our plan repair technique 
and explain the details of various data structures. In Section 9.4, we give an example to demonstrate 
our algorithms. In Section 9.5, we show how our general repair techniques are adapted to a 
transportation scheduling domain and give some test results. Section 9.6 is a discussion section 
and conclusion. 

9.2     Related Work 

The simplest way of doing plan repair is to replan from scratch with updated information (new 
initial state, new action description, etc.). The obvious disadvantage of this method is inefficiency, 
but an equally important disadvantage in some domains is loss of continuity: replanning from 
scratch might make arbitrary changes to portions of the plan that could have been salvaged. 

Local repair strategies attempt to circumvent these two problems by making isolated modifi- 
cations, ranging from reinstantiating a single variable to replacing a faulty action [99, 116]. These 
methods can be highly efficient, but they can typically handle only a limited number of domain- 
specific failure types. 

A more general approach to plan repair is to use ideas from plan modification and plan reuse. 
Kambhampati [51, 52, 53] provides a systematic way of performing plan modifications based on 
validation structures. A validation structure represents the internal dependency of a plan. This 
structure is used to identify the subplan to be modified, suggest modifications, select and control 
the refitting, and assist in plan mapping and retrieval. The method is both complete and consistent. 
Our plan repair problem can be viewed as a special case of this plan modification problem. 

From the complexity point of view, Nebel [76] has shown that conservative plan modification 
is at least as hard as plan generation, and in some cases can be even harder. In this context, 
"conservative" means that plan modification causes minimal change in the old plan. However, this 
result may not be relevant in practice as long as we use conservatism as a desired heuristic rather 
than as a hard requirement. 

Hammond [45] uses a case-based repair strategy in CHEF, a planner in the domain of Chinese 
cooking. Similar to [99], CHEF uses deep causal reasoning to explain the failure. It then uses this 
explanation to index plan repair strategies. Based on the reason for a failure, repair strategies are 
classified into several categories, each of which suggests a way of fixing the faulty plan. CHEF's 
repair strategy can handle many types of failure with carefully crafted solutions, but its main 
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drawback is that it requires highly knowledge-intensive effort for each new domain. 
Turner [110] suggests a plan repair technique of attaching directives to preconditions. When a 

precondition is violated, either a "strategic" or "tactical" plan modification will be carried out to 
avoid the violation. Turner also makes a distinction between absolute and flexible preconditions. 
As with CHEF, designing the directives involves a large amount of domain-specific information. 
Also, directives do not address failures in which no preconditions are violated (for example, a 
dynamic simulator may simply report back a step failure and a new state without giving specific 
precondition violations that could be used to retrieve a directive). 

It is often useful to make a distinction between failure detection and failure recovery. Our 
iterative replanning algorithm handles the latter part by reusing the same inference engine for 
plan generation. In this case, explaining a failure essentially means generating new action (state) 
descriptions based on the observed failure. Failure detection techniques from [11, 84] and causal 
reasoning techniques from [45, 99] might be useful to combine with our inference technique to 
produce an effective plan repair module. 

9.3    General Plan Repair 

In this section, we describe an algorithm for doing general plan repair (GPR). We will provide 
pseudo-code for the algorithm, and show how the data structures used in the algorithm can be 
constructed efficiently. 

The following notation is used: 

• A: individual action. 

• AS : an action sequence or a plan. We also use {Ai,..., Af\ to represent the action sequence 
from Ai to Aj. 

• S:   state.   So represents the initial state.   A state is a set of properties and their truth 
values at a particular point in time. An action can be viewed as a transition between states 
yAi  '.  bi—\       >  bi). 

• G: set of one or more goals or subgoals, which are properties that must be true in the final 
state. 

• P: planning problem, which is a pair of starting state and final goals. P = (S,G). 

A complete plan can be viewed as a linear sequence of actions: 

c   Ai  c   A2        Ai  c Ai+i        An a 

It also corresponds to a sequence of state transitions. A failure is signaled when there is a dis- 
crepancy between a planned action/state and a current action/state. The current action/state can 
result from either simulation or execution. 

In this framework, there are two reasons that a plan can fail: 

1. Action Ai does not establish the expected transition between Si-i and Si. 

2. State Si-i (or Si) may be changed to some other state Sa by an external event. 
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state-based-plan-repair(At, AS) [A{ = bad action, AS = plan] 
{ 

^before! ^after <- partition-pla^A,?, Aj) 
loop 

{ 
S *- construct-state(S0, ASbefore) 
G +- construct-state(S0, {ASbefore, ASa{teT}) 
ASi' <- call-planner(S, G) 
if successful 

then return ASf = {ASbef0re, AS?, AS^} 
else ASbefore, yl^after <- retract-actions(ASbefore, Rafter) 

} 

Figure 9.1: The state-based plan repair algorithm. 

For the purpose of plan repair, a type-2 failure can be reduced to type-1 by adding a dummy action 
Ad between £,- and Sa, and reporting a type-1 failure on Ad? In the following discussion, we assume 
that if an action A; fails, a new action Av is generated by failure analysis. The action description 
for Aii is then asserted to the domain theory and the description for A; is retracted. 

9.3.1    Algorithms for General Plan Repair 

9.3.1.1 Overview 

Our approach starts by trying to find an action sequence ASV to replace a faulty action A;; if that 
does not work, we then try to replace the action sequence from A;_a to Ai+b, iteratively increasing 
the numbers a and b until a satisfactory replacement sequence AS? is found. The final plan ASf is 

{Ax,..., ;4,-_0_i, {AS*}, Ai+b+u ...,An} 

We generate the replacement sequence ASy by analyzing the effects of the retracted sequence 
of actions {A,-_0,..., Ai+b}, formulating a new subproblem Pt-, and submitting it to the original 
planner for plan generation. 

Notice that the actions we retract are always contiguous. This requirement greatly simplifies 
the generation of the new subproblem (see Section 9.6). Also notice that if the failure is reported 
by an execution monitor rather than a simulator, we must require that a = 0 because actions 
committed cannot be retracted. 

a 

The rest of our algorithm deals with generating the subproblem Pt- and verifying the solution 
ASf. Based on two different ways of generating the subproblem Pt-, there are two approaches for 
plan repair: the state-based approach and the goal-based approach. 

9.3.1.2 The State-Based Approach 

The state-based approach to general plan repair is shown in Figure 9.1. Initially we use state S{ 

2 We report a type-2 failure only if the state change will affect future plan execution or the final goals and we need 
to capture the causality of an external event. 
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as the initial state, and we use the conjunction of all properties of state 5;+i as the goal of the 
subproblem. If the planner fails to solve the subproblem, we use state Si-a as the initial state 
and use the conjunction of all properties of state Si+b as the goal. The numbers a and b may 
be increased in any monotonic fashion after every iteration. The generation of states and their 
properties is discussed in Section 9.3.2. 

The verification of the final plan ASf is trivial. The replacement sequence ASi> starts from state 
Si-a and reproduces state Si+b- To the rest of the plan, ASi' is indistinguishable from the original 
sequence {A;_a,..., A!+f,}. So if the original plan is valid without failure Ai (i.e., the planner is 
sound), plan ASf is valid with failure A, corrected. 

However, using the conjunction of all properties of state Si+b as the goal for problem Pi is 
too restrictive. Very often it is impossible to reproduce exactly the same state with a different 
set of actions. Also, this approach greatly overconstrains the problem: state Si+b can easily have 
hundreds of properties, many of which are irrelevant to the rest of the plan. We address these 
concerns with the goal-based approach below. 

9.3.1.3    The Goal-Based Approach 

This approach differs from the state-based approach in that the goal of P; is formulated based on 
the relevant goals of action sequence ASi = {Ai-a, •.., A,-+&}. Numbers a and b are also increased 
based on a goal structure through iterations. Using the domain theory and a complete plan, we can 
construct a list of state properties and a goal hierarchy. We say an action A "supports" a subgoal 
G if one of the effects of A achieves G. In the goal hierarchy, either A is listed under G or A has a 
pointer to G (see Section 9.3.2). The goal-based approach is shown in Figure 9.2. 

1. Initially, when an action failure Ai is reported, we retract that action Ai and formulate a new 
subproblem based on the state Si and the goals that Ai supports. 

An action is listed in the goal structure under exactly one subgoal; it has pointers to other sub- 
goals it supports. The details of constructing the goal structure is explained in Section 9.3.2. 

2. We send the subproblem to the planner. If the planner fails to produce a subplan, we backtrack 
to the parent Gp of action A; in the goal hierarchy. The sequence of actions {A;_a,..., Ai+b} 
under the goal Gp are retracted. 

We require that the sequence of actions are temporally continuous in the complete plan. Ac- 
tions under one subgoal do not necessary satisfy this requirement, although our construction 
of the goal structure tries to achieve this continuity. In any case, we set A;_a to be the first 
action under Gp, and Ai+b to be the last action under Gp. 

3. The new subproblem Pp is formulated based on the state-Si-a, the goal Gp, 'and all other 
goals G0 that are supported by ASi — {At_a, • • •, Ai+b}. 

G0 should include only those subgoals that are not listed under Gp; any subgoals listed under 
Gp no longer need to be supported once Gp is retracted. 

4. If the planner finds a new sequence of actions A5V to solve the problem, we fit ASy in the 
old plan and verify the preconditions of all actions following A5V. 

In the formulation of the new subproblem Pp, we account for the desired effects of the retracted 
actions by adding goals G0. But we still have to verify the preconditions of later steps to 
ensure that the new action sequence AS? does not introduce damaging side effects. 
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goal-based-plan-repair(j4j, AS) [A{ = bad action, AS = plan] 

{ 
^before, -^after *- partition-plan(AS, Ai) 
loop 

{ 
^before <~ COnstrUCt-State(So, j45before) 
Safter *~ COnstrUCt-State(5o, {^before, Rafter}) 
AS{i <— gen-plan-repair(5before) subgoal U side-effects, AS^er) 
if successful 

then return ASf = {^before, AS?, ASa{teT} 

else ASbefore, ASaiter, subgoal, side-effects <— retract-actions(J45before5 -*45after) 

} 
} 

gen-plan-repair(5before, subgoals, AS^ter) 

{ 
new-subgoals <— 0 
loop 

{ 
subplan <— call-planner(Sbefore? subgoals U new-subgoals) 
new-subgoals *— verify-plan(su&p/an, ^45after) 

} 
until new-subgoals = 0 
return subplan 

} 

Figure 9.2: The goal-based plan repair algorithm. 
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Given that state Si has properties II, = {pi,P2,- • -,Pn}, 
Calculate IIi+i (properties of 5;+i after applying action A; in Si) as follows: 

STRIPS: 
If action A; has addlist a; and delete list Si, 
then II,-+i = {II; — #,-} U Oj. 

Situation Calculus: 
If action A; is represented by the clauses 

holds(a;i, do(A;, S)) <— holds(pij,S), holds(pi2,S), ..., holds(pinl,S) 

holds(a:TO, do(A,-, S)) «- holds(pTO1,S), holds(pm2,S), ..., holds(pm„m,S) 
then n,-+i = {xj»9 | VA; : Pjk»9 unifies with some p £ II,-} 

where 0 is the most general unifier. 

Figure 9.3: The algorithm for generating state properties. 

5. If a precondition Gj of action Aj (j > i + b) is not satisfied, we backtrack, add Gj to the 
goals of Pp, and continue until all preconditions are satisfied. If the repair at Gp level fails, 
we backtrack to a higher level subgoal in the goal hierarchy. 

The iterative repair strategy is complete; in the worst case, it will retract all actions and replan 
the original problem from scratch. 

9.3.2    Data Structures 

There are two major data structures used by the plan repair algorithm. One is the list of states and 
their properties, and the other is the goal hierarchy. The state-based repair uses only the former, 
and the goal-based repair uses both. 

9.3.2.1 List of State Properties 

For both STRIPS [40] and situation calculus [68] notation, we can use forward chaining (progression) 
to generate the list of state properties, as shown in Figure 9.3. 

9.3.2.2 Goal Structure 

In a goal structure, there are two types of nodes: action nodes and goal nodes. An action node is 
connected to its parent node through a subgoal link and is connected to its children through precond 
links. We call the corresponding reversed links action and precond-of, respectively. We regard the 
goal hierarchy as a tree structure based on the subgoal/action and precond/precond_of links. We 
handle side effects by attaching effect and supports pointers to the tree structure. Figure 9.4 
illustrates an example goal structure. 

Goal structures can be generated based on the final goals and a complete plan using the algo- 
rithm shown in Figure 9.5. This algorithm works for both STRIPS and situation calculus notation, 
although the preconditions are represented differently for each. 
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O    O    O    O 

Figure 9.4: An example goal structure. Rectangles denote goal nodes; ovals denote action nodes; 
circles denote the initial state. Dashed arrows lines are effect/supports links. The dotted oval at 
the top is a dummy action node to guarantee a tree structure. 
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construct-goal-structure((?, AS) 
[G= {pi,...,Pm} - top-level goals, AS = {ai,... ,an} = plan] 

{ 
for i from n downto 1 do 

{ 
g <— the first goal in G that Ai supports 

if (5 = 0) 
then Aj.subgoal <— dummy- 
else 

{ 
g.action <— A{ 
Aj.subgoal <— g 
G^G-g 
Vp £ A{.preconditions: G = p + G 

} 
V other g £ G 

{ 
if A{ supports g 

then 

{ 
Ai. effects <— g + Ai .effects 
g.supported <— A; 

} 
G^G-g 

} 
} 

} 

Figure 9.5: The algorithm for constructing the goal structure. 
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Given a sound plan, the goal hierarchy constructed by the algorithm in Figure 9.5 has the 
following properties. 

1. Each action is listed under exactly one subgoal through its subgoal link. 

2. Each subgoal is listed under exactly one action through its precond link. 

3. For each subgoal, one of the following is true: 

(a) the subgoal is supported directly by an action link; 

(b) the subgoal is supported indirectly by one or more effect/supports links; 

(c) the subgoal is supported indirectly as a property of the initial state. 

In other words, every subgoal in the goal structure is supported. 

The first two properties can be proven trivially based on our algorithm. The final property 
follows from Chapman's truth criterion for complete plans [24]. 

Notice that we assign subgoal and effect links in a greedy fashion; that is, a subgoal is always 
supported by the last action that asserts it. In this way, the construction of the goal structure is 
greatly simplified because we do not have to worry about causal link violations. Our goal structure 
does not necessarily reproduce the same proof structure or causal structure in the plan generation. 
The correctness of the goal structure (property 3) is guaranteed by the truth criterion for complete 
plans. 

An action Ad with a Dummy subgoal is a redundant action because Ad does not support any 
subgoals. We can safely remove actions listed under a dummy subgoal and reorder the plan. In the 
rest of this discussion, we assume that such actions do not exist. 

9.4    An Example 

In this section, we will walk through a simple example to demonstrate our plan repair algorithm. 
We use an extended version of the monkey and bananas problem. Since the complete domain 
theory is quite long and the preconditions and postconditions of each actions are intuitive, we omit 
the detailed listing. 

The initial state is shown in Figure 9.6. The world includes six numbered rooms (LO through 
L5) and each room contains one or more objects. The goal is to achieve destroyed(Box). The 
monkey (M) starts in room LI, and there is dynamite (D) in rooms L4 and L5. 

The original plan is shown in Figure 9.7. Now let us suppose that our description of the 
GRAB operator was incorrect: this operator actually has an additional precondition that dynamite 
must be unlocked in order to be grabbed. If the dynamite in room L4 is locked, then the action 
GRAB (M, D ,L4, Floor) will fail. We create a new operator GRABJI that has an additional precondition 
requiring that the grabbed object is not locked, and we assert this new operator into the domain 
theory, retracting GRAB. 

Based on the original plan and goal, we can construct a goal structure using the algorithm from 
Figure 9.5. The goal structure for this problem is shown in Figure 9.8. 

We retract the failed action GRAB (M, D,L4, Floor) and formulate a new problem Pi. The starting 
state of Pi is S\. The goal of P, is has(M.D), since that is the property supported by the retracted 
action. A solution for subproblem Pi is shown in Figure 9.9; basically, the monkey finds an unlocked 
dynamite in room L5. At the verification stage, we detect that the precondition at (M,L4) of a later 
action is violated. We add this precondition as an additional goal of P;.  A new solution of the 
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Ladder 3 Box 

Monkey   [     j A      \   Dynamite 

Bananas Dynamite 

Figure 9.6: The initial state. 

so 

Figure 9.7: The original plan. 
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at(M,L4) 

G0(L1,L4) 

has_nothing(M) 

at(D,L4) 
on(D.FIoor) 
on(M.FIoor) 

Figure 9.8: The goal structure. 
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SI has(M,D) 

Figure 9.9: The first solution of subproblem Pi. 

si 

Figure 9.10: The final solution of subproblem Pt. 

subproblem is show in Figure 9.10; this solution satisfies all preconditions of the later actions. The 
final plan is shown in Figure 9.11. If any future failure occurs, this final plan should be used to 
construct a new goal structure. 

9.5    Plan Repair in the Transportation Domain 

In this section, we show how the general plan repair strategy introduced in Section 9.3 can be 
adapted to the specific domain of transportation scheduling. We can use specialized domain in- 
formation to optimize some of the procedures in the general plan repair approach. We begin by 
briefly explaining the transportation scheduling problem.3 

A problem statement consists of a set of airports, a set of airplanes, and a set of cargos to 
deliver. Each airplane is based at some airport and has various constraints such as maximum 
speed, minimum runway length, and maximum cargo capacity. Each cargo has an origin at one 
airport, a destination at another airport, a size/weight description, and delivery constraints defined 
by earliest/latest departure time and earliest/latest arrival time. The goal is to deliver all cargos 
to their destinations without violating any constraints. 

We call a single flight from one airport to another airport a trip. We assume that cargos are 
delivered using non-stop trips only and that multiple cargos can be transported during a single trip. 
A plan is represented as a set of trip schedules, one for each airplane. As discussed in Section 9.3, 
a plan can fail either because an action did not perform as expected (for example, a trip took too 
long) or because the world changed unexpectedly (for example, a cargo's weight changed). We 
continue to treat these two failure types uniformly from the perspective of repair. 

Table 9.1 presents a mapping from the terminology of a general planning domain to the spe- 
cialized terminology of transportation scheduling. This correspondence suggests how we can adapt 
general plan repair to the transportation domain. The transportation domain is an example where 
state-based plan repair is inadequate; since a state is represented by the locations of cargos and 
airplanes at a certain time, if a trip fails it is unlikely that an alternative schedule can reproduce 
the same state. 

The method we use for plan repair in the transportation domain is very similar to the general 
plan repair algorithm, but we have taken advantage of the simple goal structure in this domain. 

3For presentation purposes, we have simplified some irrelevant details in this description; see [15, 16, 17, 20] for a 
more complete description. 
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Figure 9.11: The final plan. 

General Domain Transportation Domain 
plan airplane schedule 
state airplane & cargo locations 
action trip 
action sequence sequence of trips 
action failure trip failure 
world changes new cargo assignment 
new action new scheduling algorithm 
subgoal individual cargo delivery 
# actions for one subgoal 1 
goal hierarchy linear (degenerate) tree 
depth of the goal structure number of trips 
plan verification temporal/physical constraint propagation 

Table 9.1: Terminology for generic and transportation planning. 
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Each action is a single airplane trip, and the only goal of that action is to deliver the cargos on that 
trip within some time constraints. Although an action does not have any other goals, it may still 
have undesirable side effects: if one trip of an airplane is late, all consequent ones may be affected. 
These side effects are handled by a temporal propagation procedure. 

A plan is a list of schedules for a set of airplanes. There are no causal or temporal relations 
among these schedules, so the trip lists for two airplanes can be considered independently.4 Viewing 
the plan as partially ordered based on delivery time intervals, we can change the behavior of the 
plan repair module by arrange trips in different ways. We have found two ways of viewing the plan 
that are particularly useful. One is to order the trips based on airplanes, and the other is to order 
the trips based on their departure times. We call the first one single plane repair (SPR) and the 
second one multiple plane repair (MPR). 

For SPR, we restrict the set of retracted trips to be within one single airplane schedule. Essen- 
tially, SPR repairs a flaw by rearranging the cargos and trips within a single airplane schedule. As 
in the general plan repair algorithm, we update the domain theory before performing any repair; 
for example, we might need to set the new traveling time of a trip based on simulator feedback. 
Initially, the repair module retracts the single identified failed trip, updates its temporal intervals, 
and tries to fit this updated trip back in the original schedule for this airplane. If the updated 
trip does not fit, the module will iteratively retract trips before and/or after the initial faulty trip, 
reschedule all cargos on these trips in isolation (using only this airplane), and try to fit the new 
subschedule back into the original schedule. The iteration stops when the rescheduled trip sequence 
fits in the airplane schedule. Note that during this process some cargos may have been "bumped 
off" because they are no longer possible to schedule. 

MPR has the added ability of rearranging cargos among multiple airplanes. Initially, the repair 
module tries to insert an undelivered cargo directly into the existing global schedule. If this insertion 
is not successful, MPR will iteratively retract cargo trips within a certain time interval to create a 
"window" across all airplane schedules and will try to fit all cargos back into the global schedule 
(not necessarily on their original airplanes). The iteration succeeds if the undelivered cargo and all 
retracted cargos fit in the schedule; otherwise the undelivered cargo is marked as "too hard".5 

Interestingly, SPR and MPR can be combined to handle different types of failures very efficiently. 
By ordering trip schedules differently, SPR and MPR can exploit two different views of locality 
to perform different types of "local repairs". SPR is more appropriate for handling delayed trips 
and deadline violations because these failures can most often be avoided by adjusting trips locally 
within the same airplanes. On the other hand, undelivered cargos or airplane failures often require 
the collaboration of multiple airplanes in MPR, and the most relevant trips are the ones clustered 
locally around similar departure times. 

This synergy demonstrates the advantage of using specific domain heuristics to adapt a general 
plan repair strategy. In the transportation domain, the goal hierarchy is very simple: since each 
airplane schedule is independent and since each trip within a subschedule depends temporally on 
all trips before it, the hierarchy degenerates into a set of unconnected right-branching trees. So 
we can customize the method of iteratively retracting actions to take advantage of this structure: 
the partition step will treat each separate airplane subschedule as a linear sequence (split at the 
timepoint of the bad cargo's departure), and during each iteration we will retract one trip from 
each side of each subschedule. 

We now provide a simple example from the domain of transportation scheduling.   There are 

4 In this paper, we make the simplifying assumption that there is no resource contention among airplanes. But 
note that the actual ALPS system does address resource contention issues. 

sNotice that MPR does not allow other cargos to be bumped off as SPR did; this is done primarily to avoid infinite 
loops (for example, cargo A bumps off cargo B, which then bumps off cargo A). 
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cargo 
Cl 
C2 
C3 

origin destination     depart     arrive 
Miami 

Washington DC 
Honolulu 

Los Angeles 
Los Angeles 
Los Angeles 

48-143 
72-143 
0-171 

80-100 
72-143 
48-171 

airplane home port 
Al 
A2 

Phoenix 
Chicago 

Table 9.2: A sample transportation problem. 

three cargos to be delivered on two available airplanes, as shown in Table 9.2.   The departure 
(arrival) intervals represent the hours during which the cargo must depart (arrive). 

The scheduler came up with the following plan. 

Airplane Al: 
Leaves Phoenix at time 0—63 
Arrives Honolulu at time 6—69 
Leaves Honolulu at time 35—69 with cargo C3 
Arrives Los Angeles at time 48—82 

Leaves Los Angeles at time 48—82 
Arrives Miami at time 53—87 
Leaves Miami at time 67—87 with cargo Cl 
Arrives Los Angeles at time 80—100 

Leaves Los Angeles at time 80—125 
Arrives Washington DC at time 85—130 
Leaves Washington DC at time 85--130 with cargo C2 
Arrives Los Angeles at time 98—143 

During simulation of this schedule, we discover that 

• the trip delivering cargo C3 is running late and actual flight time will be 98 hours.6 

• Similarly, delivering cargo C2 will take 25 hours. 

• A new cargo C4 must now be delivered from Pittsburgh to Los Angeles, departing and arriving 
during hours 0-191. 

We first use SPR to adjust the trips within airplane Al to fix the first two problems, with the 
following result: 

Airplane Al: 

Leaves Phoenix at time 0—9 

Arrives Honolulu at time 6—15 

Leaves Honolulu at time 6—15 with cargo C3 

Arrives Los Angeles at time 104—113 

This example is deliberately extreme to illustrate the plan repair algorithm. A schedule with only three cargos 
does not usually need sophisticated repair. 
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Leaves Los Angeles at time 104—113 
Arrives Washington DC at time 109—118 
Leaves Washington DC at time 109—118 with cargo C2 
Arrives Los Angeles at time 134—143 

Cargo Cl could not be delivered. 

Cargos C2 and C3 are rescheduled successfully, but cargo Cl is bumped off. MPR is called next 
to reschedule Cl as well as C4. The final schedule is 

Airplane Al: 

Leaves Phoenix at time 0—9 

Arrives Honolulu at time 6—15 

Leaves Honolulu at time 6—15 with cargo C3 

Arrives Los Angeles at time 104—113 

Leaves Los Angeles at time 104—113 

Arrives Washington DC at time 109—118 

Leaves Washington DC at time 109—118 with cargo C2 

Arrives Los Angeles at time 134—143 

Leaves Los Angeles at time 134—173 

Arrives Pittsburgh at time 139—178 

Leaves Pittsburgh at time 168—178 with cargo C4 

Arrives Los Angeles at time 181—191 

Airplane A2: 

Leaves Chicago at time 0—84 

Arrives Miami at time 3—87 

Leaves Miami at time 67—87 with cargo Cl 

Arrives Los Angeles at time 80—100 

9.6    Discussion and Conclusions 

There are two basic ideas underlying our plan repair algorithm. One is that when an action fails, 
local actions are likely to be responsible for the failure (and thus the recovery). But what does 
"local" mean? In the transportation domain from Section 9.5, we used temporal locality based 
on the (temporal) execution order of actions in a plan. A more natural choice might seem to be 
"causal" locality; however, with most non-linear plans, temporal locality can be made to reflect 
causal locality when actions are ordered based on some particular traversal of a causal structure. 

The other idea is that we can use the inference power of a generative planner to do plan repair. 
Once the failure is identified, we need to generate a plan based on a new set of requirements (in 
most cases similar to the old set). By reducing the plan repair problem to the formulation of a new 
planning problem (which is usually smaller and easier than the original planning problem), we can 
use the original planning system to perform repair as well. 

Using temporal locality can also help to minimize the changes to the overall plan structure. 
Although optimally conservative modification is not computationally feasible [76], we do not nec- 
essarily want to truly minimize the number of changed actions. In the transportation domain, for 
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example, it may be less intrusive to reorder 50 trips within one single airplane than to replace 
20 trips spread across many airplanes. Using a combination of SPR and MPR in this domain 
clusters the changes naturally, producing good locality of modification without requiring optimal 
conservation. 

To demonstrate the effectiveness of this approach, we tested our algorithm by adding 100 random 
new cargos to an existing schedule already containing 100 cargos (we can treat this as one type of 
plan repair). Of these 100 new cargos, 92 of them could be added using SPR without having to 
modify the rest of the schedule at all. Seven of the remaining eight could be added after shuffling 
some trips with MPR. The final cargo could not be delivered at all. This example exhibits the 
locality nature of plan failure and recovery. Had we replanned from scratch for all these 100 cargos, 
the new schedule would have been significantly different from the original plan. In many domains 
(including transportation scheduling), such changes are very costly. 

9.6.1 Comparison to Other Methods 

Our plan repair methodology appears to fit within Howe and Cohen's [49] classification, which 
listed six different plan repair strategies. One of their strategies is to replan at the parent level. 
Our goal-based repair algorithm seems to be a domain-independent extension of that strategy. 

The goal structure we use is similar to other causal link structures (e.g., [114]). The main 
difference is that our goal structure is treated as a tree, while other causal link structures are 
viewed as networks. In our goal structure, an action is listed under exactly one subgoal based 
on its temporal order in the complete plan. Links to other subgoals supported by an action are 
indicated by effect/supports pointers superimposed on top of the tree. 

9.6.2 Limitations and Future Work 

State-based repair is applicable to most planning representations; the only requirement is the ability 
to derive all properties of a state. For goal-based repair, we use the goal structure. The algorithm we 
provide works for simple STRIPS and situation calculus notations. It will be interesting to see how 
the algorithm can be extended to handle more powerful representations such as disjunctive goals 
and conditional actions. The plan and the domain theory alone may not be enough to construct 
the goal structure anymore, and we might have to rely on additional information from the planner 
such as a proof tree. So far we have deliberately avoided using any information from a proof tree 
because we are attempting to keep the method completely independent of any particular planner. 

9.6.3 Conclusion 

This report summarizes our investigation in plan repair techniques. We have designed a general 
plan repair algorithm that is independent of any particular planner or planning domain. Our plan 
repair strategies can be either state-based or goal-based. Both of these strategies handle STRIPS 
and situation calculus notations. We have adapted the general algorithm to the transportation 
domain. The domain-specific method takes advantage of the special goal structure in transportation 
schedules. We use a combination of two separate modules (single plane repair and multiple plane 
repair) to form a plan repair unit that is complete and correct relative to the underlying planner. 
This plan repair unit adds to the ALPS fast scheduler the capability of locally adjusting individual 
trips and adding new cargos while maintaining continuity in the overall plan structure. 
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Chapter 10 

The ALPS TPFDD Simulator 

Within the transportation domain, ALPS uses a domain-specific simulator to identify 
potential flaws in transportation schedules. The ALPS TPFDD Simulator is designed 
to augment particular capabilities and deficiencies of the ALPS transportation domain 
theory, and is also able to test schedules for robustness in the presence of unanticipated 

external events.1 

Our original design for the ALPS architecture had provisions for a plan critic, whose purpose 
was to project a proposed plan or action into the future, identify potential flaws, and assist a 
plan repair module in correcting those flaws. In the process of refocusing our past year's effort on 
transportation domain issues, the original general-purpose plan critic has evolved into a domain- 
specific TPFDD simulator. Unlike other feasibility analyzers, however, this simulator is designed 
to augment particular capabilities and deficiencies of the ALPS transportation domain theory. 

Once the ALPS inference engine generates a schedule, the schedule is passed along to the 
simulator. The simulator performs two primary services. First, it analyzes the schedule at a finer 
level of detail than the inference engine did. This analysis allows the simulator to identify resource 
contentions and bottlenecks that the inference engine would have missed. Second, the simulator 
can test the schedule for robustness in the presence of unanticipated difficulties by simulating 
nondeterministic external events that may affect the outcome of the schedule (such as storms, 
mechanical failures, or terrorist activity). Information gained from the simulation is sent to the 
ALPS plan repair module, which attempts to correct any flaws that have been discovered. 

The ALPS simulator is based on an object-oriented design implemented in C++. The simulator 
takes as input the initial world state (locations of cargos, allocation of transportation assets, etc.) 
that was given to the inference engine, along with the schedule that the inference engine generated. 
It constructs a stream of events and executes these events in a simulated world, reporting the results 

of this simulation. 
Our design considers the asynchronous nature of transportation problems. In the real world, 

transport events may be delayed due to bottlenecks such as high demand for runways at airports. 
From a simulation perspective, we see the most important features of a transport event as the 
dependencies between it and other transport events, rather than the exact time at which the event 
is scheduled to occur. Consider this example: We plan for aircraft Al to deliver a cargo to airport 
PI at time T. We also plan for aircraft A2 to pick up the same cargo at PI at time T + 2 hours, 
then carry it to airport P2. If it happens that the arrival of Al is delayed for 4 hours, we need 
to know that the departure of A2 should be delayed until the arrival of the cargo carried by Al. 

1This chapter was adapted from work presented in [20]. 
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Our general structure of plans embraces the relations between transport events, so we gain access 
to automatic and computer-aided reasoning for future plan repair. 

10.1    Simulator Design 

The ALPS simulator uses powerful object-oriented techniques implemented in C++.   The main 
data structures are 

• a state tree of C++ objects representing the state of the physical objects such as aircraft, 
ships, and cargos (their locations and arrival times); 

• a process graph representing the dependencies between scheduling steps as a directed acyclic 
graph (DAG), with markers representing which steps have been executed; 

• a process queue containing the events (or processes) currently under execution, sorted 
according to their completion times. 

Processes are treated as transformations on the state space. They simulate the movements 
of objects from one place to another and are represented by actual movements of nodes in the 
state tree. For instance, loading a cargo from an airport onto a transport plane is represented by 
removing it from the list of cargos held by the airport and placing it on the list of cargos held by 
the plane. Processes are represented by nodes in the DAG. An edge from pi to P2 means that p\ 
must complete before pi can start (i.e., that p2 depends on p\). 

The process graph depicting the dependencies between transportation events is constructed 
directly from the schedule produced by the inference engine. The graph consists of a number of 
"chains" (one for each punit)2 as illustrated in Figure 10.1. The basic order is that a punit will 
repeatedly load cargo, take off, fly to its destination, land, and unload. In some cases, where the 
punit must first go to another airport to load the cargo, the missing loading/unloading events will 
be represented by a dummy node. Since a punit is composed of multiple aircraft or ships, there are 
periodic synchronization events where each aircraft will take off individually and rendezvous before 
flying to the next location (similarly for landing). 

Before a process is placed on the process queue, the simulator determines how much time the 
process should require. This determination is based primarily on the domain knowledge (airspeeds 
and distances) supplied by the inference engine, but we have deliberately added more fine-grained 
knowledge to the simulator; for example, the scheduler assumes a constant time duration for un- 
loading an aircraft, while the simulator calculates a proportional duration based on the amount of 
cargo. The resulting process duration is added to the current time to give the expected comple- 
tion time. The actual completion time may differ from this estimate because of delays, resource 
contention, and external events. The current time is the completion time of the most recently 
completed process. 

The process queue is initially loaded with the first event on each punit's process chain. The 
simulator then goes through the following loop until the ^process queue is empty: 

1. Get from the queue the process p that is the next to complete. 

2. Set the current time equal to the completion time of p. 

3. Transform the state as determined by p. 

A punit (pronounced "pee-unit") is a collection of aircraft or ships of the same type, based at the same location, 
that travel together — roughly equivalent to a squadron. 
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Figure 10.1: The ALPS simulator process queue. 
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4. For each process pi that depends on p, signal p{ that p{ is no longer waiting for p. If p was 
the last process for which pi was waiting, determine the completion time for pi, then put pi 
on the queue. 

10.2 Process Queue Details 

To help explain how the process queue works, we will run through a typical example starting from 
when the parser first reads the input file. 

1. When the simulator reads a complete vehicle schedule from the scheduler output, it forms a 
chain in the process graph (as illustrated in Figure 10.1) and invokes the appropriate start 
function to begin simulation of that chain. 

2. Each process type (for example loading or unloading cargo) has a different start function. 
The first thing that a start function does is check whether the minimum start time for that 
action has arrived yet; if it has not, the simulator starts a delay process, which will wake up 
at the appropriate time and restart the original process. 

3. Once the minimum start time has arrived, the start function makes requests to various re- 
source managers for any resources it needs. When each resource manager awards its resource, 
it will re-invoke the process's start function, and eventually all resources will be available. 
At that time, the process calculates its finish time, actually enters the queue, and starts 
executing (causing a print manager to issue a message to the simulation log). 

4. Once the process is in the queue, it is considered to be actively executing. When the finish 
time for the process is reached, the print manager issues a message to the simulation log, the 
process is removed from the queue, and all of the process' children in the process tree are 
notified that one of their dependencies has completed. If any of these children now have all of 
their parents satisfied, those children's start functions are invoked and the procedure repeats. 

10.3 Simulation of Bottlenecks 

We simulate bottlenecks using monitors. Monitors are implemented as C++ objects, each of 
which manages a set of resources. Consider the simple example of a runway monitor. Each airport 
has a monitor that manages the use of its runways. When a plane-landing process is ready to 
begin, it sends to the airport's runway monitor a request for a runway. If a runway is available, the 
monitor assigns the runway to the process, which can then begin executing; otherwise the process is 
placed on a queue maintained by the monitor. When a process gives up a runway and the monitor's 
queue is not empty, the monitor assigns the runway to one of the waiting processes, which can then 
begin. Otherwise the runway is made available for new requests. 

This simple model implies an approximate simulation of delays due to load on an airport. It 
also supports the collection of resource utilization statistics that can be fed back to the planner 
for plan refinement and repair. By making use of this information, a planner could avoid the 
over-scheduling of resources without generating fragile, excessively detailed plans. The monitor 
abstraction is general enough to simulate models of resource management more complex than the 
above example. 
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10.4    Simulation of External Events 

In addition to simulating the dynamic but predictable behavior of resource bottlenecks, the ALPS 
TPFDD Scheduler is able to test a schedule for the effects of unexpected external events. For 
example, between the time that a schedule is generated by ALPS and the time that the schedule 
is actually executed, an unexpected storm might force travel speeds to change or airports to close. 

Since there may be many different types of external events the user may wish to simulate 
(storms, earthquakes, equipment failure, terrorist activity, etc.), the ALPS Simulator models the 
effects of external events rather than the events themselves.3 As a proof of concept, the simulator 
currently handles one specific effect (more may be added in the future): 

Any vehicle of type t traveling between port pi and port p2 during time interval i must 
use speed s instead of its default speed. 

This single effect can be used to model more complex behaviors such as weather patterns and 
mechanical failure by accelerating and decelerating vehicles appropriately. 

Once the simulation is running, the user will want to know whether failures are caused by 
a particular external event or whether they are inherent in the underlying plan. Unfortunately, 
assigning responsibility for failures is a fairly complex problem. Even in the simplest case, where a 
cargo arrives late after its trip speed was modified by an external event, the simulator would have 
to compare the current analysis to an analysis of what would have happened if that event did not 
occur (since the cargo may have arrived late anyway). But each external event may also adjust 
the behavior of resource bottlenecks, potentially causing cascading effects throughout the schedule. 
For now, the only way to classify scheduling failures is to run the simulator twice (once with the 
external events and once without) and compare the output; any differences could be tagged with a 
warning that the failure may be a consequence of the external event modeling.4 

3It should be straightforward to add some preprocessor to translate conceptual events into physical effects, but 
ALPS does not currently have this capability. Another natural extension would be to allow random external events, 
such as "create random delays using the following probability distribution". 

4 But it could also be possible that the failure is a result of nondeterministic behavior within the scheduler. 
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Chapter 11 

Conclusions 

As with any extended project, ALPS has had its share of successes and difficulties. We 
have reported some significant and impressive results, both from a theoretical perspective 
and within the specific transportation domain. We have also encountered some unex- 
pected complications in applying the ALPS methodologies to the transportation domain. 
This chapter summarizes those results and discusses the lessons learned.1 

As with any extended project, ALPS has had its share of successes and difficulties. We have 
reported some significant and impressive results, both from a theoretical perspective and within 
the specific transportation domain. We have also encountered some unexpected complications in 
applying the ALPS methodologies to the transportation domain. This chapter summarizes those 
results and discusses the lessons learned. 

11.1     Speedup Techniques 

Our results have shown that not only are our speedup techniques effective across a wide range of 
problems, but these techniques show even greater strength in combination than their individual 
performance might imply. 

11.1.1     Caching 

We have performed several experiments to measure the effectiveness of different caching config- 
urations [90]. These experiments used 26 randomly ordered blocks-world problems.2 While an 
unlimited-size cache provides the maximum reduction in the number of nodes explored in search 
of a solution, it causes an overall decrease in performance due to increased overhead. Similarly, 
although removing redundant cache entries reduces the number of expanded nodes even further, the 
additional overhead involved overwhelms any runtime benefit. For the particular domains tested, 
the best runtime performance came from a single fixed-size cache using a modified LRU policy 
with both success and failure entries; this configuration was more than 35% faster than an identical 
non-caching system. 

1This chapter is adapted from [21]. 
Note that these results are dependent on the particular domain theory used in the experiments; these results 

should be taken as indicative of what might be achieved in other domains rather than a promise of what will be 
achieved. 
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11.1.2 EBL 

We have performed a series of experiments comparing our EBL*DI algorithm with the traditional 
EBL algorithm to determine whether macro-operators produced by EBL*DI reliably outperform 
macro-operators acquired by traditional EBL across a spectrum of application domains [88]. The 
results of the experiments are as follows: 

• For the blocks world domain with carefully selected training sets, EBL*DI is significantly 
faster on average than EBL and solved the test problems in as little as 32% of the time while 
searching as few as 33% of the nodes searched by an otherwise equivalent non-learning system. 
This encouraging result is offset somewhat by the fact that selection of the training set was 
critical; training sets consisting of randomly chosen problems typically do not give speedup 
in this domain. 

• For a propositional calculus domain (the "Logic Theorist" domain), again with carefully 
ordered training sets, EBL*DI solved significantly more problems within a fixed time limit 
than equivalent non-learning and traditional EBL systems. It searched far fewer nodes (17% 
of those searched by the non-learning system) and was also faster (CPU time ratio of about 
13%) than the other systems. 

• For a synthetic domain theory with random uniformly distributed problems, both traditional 
EBL and EBL*DI solved fewer problems within a fixed time limit than an equivalent non- 
learning system.3 However, EBL*DI learned intrinsically more useful macro-operators than 
EBL, so was able to better mitigate the adverse effects of the utility problem. Furthermore, 
of the problems that could be solved, EBL*DI took only 20-30% as much time as the non- 
learning system to solve each problem. 

11.1.3 Nagging 

Nagging has proven itself to be an exceptionally powerful speedup technique. We have conducted 
experiments [97] involving over 1000 first-order logic problems [108] in a variety of domains in- 
cluding planning, logic, graph theory, algebra, program verification, circuit design, and classical AI 
benchmarks. Comparing the base-level DALI inference engine on a single workstation to a DALI 
configuration with caching, intelligent backtracking, and a network of 99 nagging subprocessors, the 
network was able to solve 34% more problems within a fixed resource constraint. On the problems 
that were solved by both systems, the nagging network outperformed the base system 80% of the 
time. An unexpected result is that several problems demonstrated superlinear speedup (i.e., the 
problems were solved more than 100 times faster with 100 processors). More recent experiments 
[102] confirm and extend these results, allowing us to evaluate several extensions and refinements 
to the nagging protocol that yield even greater performance improvements. 

The development of nagging is perhaps the single most important technical advance obtained 
in the course of our research on inferential systems. Our tests on 100 processors constituted, at 
the time, the single largest theorem proving experiment on record. Since that time, our continued 
work has led to a number of refinements to the naive nagging model that effectively enhance its 
performance in this broad cross-section of domains. Nagging is a truly novel development that 
permits us to exploit existing loosely-coupled computational resources to solve large, practical 
problems that are beyond our reach without nagging. 

3This is expected since the utility problem is most severe when the problem set is uniformly distributed. 
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Our results in first-order inference have been so encouraging that we have begun developing 
nagging implementations in other domains such as alpha-beta minimax, the Traveling Salesman 
problem, and learning of Bayesian inference networks[60]. Our continuing work on nagging includes 
instantiation of the basic protocol in these and other domains as well as further refinement to the 
first-order model. 

11.1.4 Multiple Techniques 

We have performed a set of experiments to study the effects of combining multiple speedup tech- 
niques [90, 12]. Specifically, we studied fixed-overhead success/failure caching with the EBL*DI 
algorithm, the nagging algorithm, and the iterative strengthening algorithm. 

While the caching-only system provided a more or less uniform speedup across all problems, 
the results for the learning-only system were highly dependent on the ordering of the problems. 
If the problems were ordered appropriately, then the macro-operators learned during training are 
very useful and significantly fewer nodes are expanded. Otherwise, the learning system ran into 
the utility problem and the new macro-operators served only to increase redundant search on some 
of the problems. 

When both caching and learning were used together, the benefits from caching reduced the 
effects of the utility problem to such an extent that, independent of which problems were selected 
for learning, the combined caching and learning system searched significantly fewer nodes than the 
base system. In fact, the combined system performed almost as well as the theoretical limit for 
an unbounded-overhead caching system, even if we disregard the extreme storage and searching 
overhead of unbounded caching. 

EBL*DI and subgoal caching work so well together because caching serves to prune the redun- 
dant search that EBL*DI may introduce through the utility problem. Caching does the same thing 
with the iterative strengthening optimization algorithm, speeding up the repeated passes through 
the search space that are introduced by the iteration. 

Using caching and nagging together requires additional coordination, and the rapid backtracking 
from nagging may decrease the efficiency of global caching, but the added ability of each processor 
to set its own local customized caching policy will often make up for this. 

11.1.5 A Paradox 

While the results we have reported for nagging, EBL*DI, bounded-overhead subgoal caching, and 
combinations of these speedup techniques are quite impressive from a research perspective, it is 
clear that these techniques were not as effective as we had hoped in the transportation scheduling 
domain (see Section 8). What can we learn from this paradox? 

All of these speedup techniques expect that the domain theory given is inclusive, that is, that it 
can be used to solve any transportation scheduling problem, using any initial partial problem spec- 
ification to derive legal solutions. In other words, the theory is assumed to be logically complete, 
yet devoid of control information about how the theory should be used (in classic Prolog termi- 
nology, such theories are described as "logic without control"). Speedup learning and nagging are 
meant to provide a means to execute such logically complete but control-poor theories efficiently 
and effectively. The domains we used for our experimental evaluations of nagging and speedup 
learning, which are taken from the machine learning and theorem proving literature, are good ex- 
amples of "logic without control." Based on our evaluations, our speedup techniques clearly meet 
their original promise, allowing us to use the theories effectively to solve very large scale problems 
using large numbers of workstations. 
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In practice, however, arbitrary partial specifications are not usually given as input; indeed, 
we generally know a great deal about how the theory is to be used to derive a solution. Thus, 
in almost every case, it is possible to hand-tune solutions that take advantage of this domain- 
dependent control information (which is, unfortunately, not stated explicitly) to derive highly 
efficient solutions at the expense of generality. In particular, the transportation planning domain 
theories we developed are definitely not "control free." By hand-tuning our domain theory and 
adding extra-theoretical control knowledge, we made the theory more effective than any speedup 
technique from the start. 

It is interesting to note that we did not initially intended to develop a transportation domain 
theory during this project. Instead, we hoped to obtain an existing logical specifications of the 
domain from a domain expert. If that had been possible, we suspect that such a declarative 
specification would have been much closer to logic without control, and our speedup techniques 
would have been more effective (but see Section 8). 

11.2    Transportation Planning and the Fast Scheduler 

When we first started using ALPS in the full TPFDD transportation scheduling domain, the logical 
domain theory worked quite well on small problems. But neither the Lisp Inference Engine nor 
DALI was able to handle full-sized transportation problems with tens of thousands of cargos, and 
the adaptive speedup techniques were not enough to overcome the huge scaleup issues (see Sec- 
tion 11.1.5). To overcome this difficulty, we created the ALPS Fast Scheduler by hand-translating 
the logical domain theory directly into straight Lisp code. Although the Fast Scheduler lost many 
of the adaptive properties and the reusability of the core inference engines, it gained a dramatic 
increase in speed and speedup: we have solved problems with 50 squadrons of aircraft and 10,000 
cargos in about 3.5 minutes. This result more than justifies the loss of some speedup techniques 
that, while very effective in other domains, were not producing significant speedup in this domain 
anyway. 

Our conclusions from this experiment are that in some performance-critical domains such as 
the transportation domain, while logical specifications work fine in principle, in practice it may be 
necessary to perform the additional step of compiling to an executable program. The important 
point is that from a logical perspective, all three inference engines do exactly the same work and 
produce exactly the same results; the performance differences can be thought of as implementation 
details. 

Our intuition is that trying to write the fast scheduler from scratch would have been more 
difficult and time-consuming than adapting an existing logical domain theory; when we had this 
theory, it took only about a day to do the basic translation. In fact, rather than viewing our 
TPFDD scheduler as a separate program, it may be more appropriate to think of it as just another 
step in the compilation of a system, where in this case much of the compilation was done by hand. 
In the future, we hope to be able to automate some of the work required in generating a "hand- 
crafted" theory, but we suspect that automated techniques may be effective only on certain classes 
of domains. 
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Appendix A 

Acronyms 

This appendix 
AI 
ALPS 
ARPA 
ARPI 
CLRU 
CPU 
DAG 
DALI 
DLRU 
EAD 
EBL 
EBL*DI 
FIFO 
GEOLOC 
GPR 
GUI 
LAD 
LFU 
LRU 
LT 
MB- 
MPR 
NUMA 
ORA 
POD 
RAM 
RDD 
SPR 
TGEN 
TPFDD 
TPTP 
WAM 

defines the acronyms used in this report. 
Artificial Intelligence 
Adaptive Learning and Planning System 
Advanced Research Projects Agency 
ARPA / Rome Laboratory Planning Initiative 
Cheapest Least Recently Used 
Central Processing Unit 
Directed Acyclic Graph 
Distributed Adaptive Logical Inference 
Dearest Least Recently Used 
Earliest Arrival Date 
Explanation-Based Learning 
Explanation-Based Learning / Domain Independent 
First In First Out 
GEOgraphic LOCation 
General Plan Repair 
Graphical User Interface 
Latest Arrival Date 
Least Frequently Used 
Least Recently Used 
Logic Theorist 
MegaByte 
Multiple Plane Repair 
Non-Uniform Memory Access 
Odyssey Research Associates, Inc. 
Port of Debarkation 
Random Access Memory 
Required Delivery Date 
Single Plane Repair 
TPFDD Generator 
Time Phased Force Deployment Data 
Thousands of Problems for Theorem Provers 
Warren Abstract Machine 
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